Abstract
Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.
Original language | English |
---|---|
Article number | 93498 |
Pages (from-to) | 1-21 |
Number of pages | 21 |
Journal | eLife |
Volume | 12 |
Early online date | 11 Jul 2024 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2023, Leighton et al.
Funding
We thank Jan Kirchner and Julijana Gjorgjieva for discussions, Christiaan Levelt for sharing plasmids, and Helmut Kessels, Alexander Heimel, Wei Wei, David Cabrera, Tamara Buijs, and Julijana Gjorgjieva for critically reading this article. This work was supported by grants of the Netherlands Organization for Scientific Research (NWO, ALW Open Program grants, no. 819.02.017, 822.02.006 and ALWOP.216; ENW Open Competition grant no. OCENW.KLEIN.535, ALW Vici, no. 865.12.001), ZonMW (top grant no. 9126021), and the 'Stichting Vrienden van het Herseninstituut' (all CL). We thank Jan Kirchner and Julijana Gjorgjieva for discussions, Christiaan Levelt for sharing plas-mids, and Helmut Kessels, Alexander Heimel, Wei Wei, David Cabrera, Tamara Buijs, and Julijana Gjorgjieva for critically reading this article. This work was supported by grants of the Netherlands Organization for Scientific Research (NWO, ALW Open Program grants, no. 819.02.017, 822.02.006 and ALWOP.216; ENW Open Competition grant no. OCENW.KLEIN.535, ALW Vici, no. 865.12.001), ZonMW (top grant no. 9126021), and the 'Stichting Vrienden van het Herseninstituut' (all CL).. Nederlandse Organisatie voor Wetenschappelijk Onderzoek 819.02.017 Christian Lohmann Nederlandse Organisatie voor Wetenschappelijk Onderzoek 822.02.006 Christian Lohmann Nederlandse Organisatie voor Wetenschappelijk Onderzoek ALWOP.216 Christian Lohmann Nederlandse Organisatie voor Wetenschappelijk Onderzoek OCENW.KLEIN.535 Christian Lohmann Nederlandse Organisatie voor Wetenschappelijk Onderzoek 865.12.001 Christian Lohmann ZonMw 9126021 Christian Lohmann Nederlandse Organisatie voor Wetenschappelijk Onderzoek OCENW.M.22.310 Christian Lohmann Stichting Vrienden van het Herseninstituut 805254845 Christian Lohmann The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Funders | Funder number |
---|---|
Netherlands Organization for International Cooperation in Higher Education | |
Stichting Vrienden van de Voormalige te Noordwijk gevestigde Reumakliniek Sole Mio | |
Stichting voor Ooglijders | |
Sociale en Geesteswetenschappen, NWO | 819.02.017, 822.02.006, OCENW.KLEIN.535, 865.12.001 |
Sociale en Geesteswetenschappen, NWO | |
ZonMw | 9126021 |
ZonMw |
Keywords
- calcium imaging
- in utero electroporation
- in vivo
- mouse
- neuroscience
- patch-clamp methodology
- spines
- two-photon microscopy