TY - JOUR
T1 - Combined theoretical and experimental deep-UV resonance raman studies of substituted pyrenes
AU - Neugebauer, J.
AU - Baerends, E.J.
AU - Efremov, E.V.
AU - Ariese, F.
AU - Gooijer, C.
PY - 2005
Y1 - 2005
N2 - The results of time-dependent density functional theory (TDDFT) calculations of resonance Raman intensities are combined with experimental deep-ultraviolet resonance Raman measurements at a single wavelength, i.e., 244 nm, in order to test the possibility to distinguish several very similar compounds. Pyrene and three of its substituted derivatives, in which a single hydrogen atom has been replaced by a halogen atom, are compared. The fixed 244 nm excitation wavelength overlapped with the same electronic transition of the four pyrenes. Ground-state calculations using the BP86 exchange-correlation functional were used to predict the Raman frequencies, whereas excited-state calculations have been carried out employing the "statistical averaging of (model) orbital potentials" (SAOP) potential within a linear-response TDDFT framework in combination with the short-time approximation of resonance Raman intensities. In view of the simplistic theoretical approach, we find a surprisingly good agreement between the simulated and measured resonance Raman spectra of pyrene and its substituted analogues in terms of frequencies and intensities, which shows that the calculations can be used reliably to interpret the experimental spectra. With this combined information, it is possible to find criteria to distinguish the compounds under investigation, although many features of their vibrational spectra are similar. © 2005 American Chemical Society.
AB - The results of time-dependent density functional theory (TDDFT) calculations of resonance Raman intensities are combined with experimental deep-ultraviolet resonance Raman measurements at a single wavelength, i.e., 244 nm, in order to test the possibility to distinguish several very similar compounds. Pyrene and three of its substituted derivatives, in which a single hydrogen atom has been replaced by a halogen atom, are compared. The fixed 244 nm excitation wavelength overlapped with the same electronic transition of the four pyrenes. Ground-state calculations using the BP86 exchange-correlation functional were used to predict the Raman frequencies, whereas excited-state calculations have been carried out employing the "statistical averaging of (model) orbital potentials" (SAOP) potential within a linear-response TDDFT framework in combination with the short-time approximation of resonance Raman intensities. In view of the simplistic theoretical approach, we find a surprisingly good agreement between the simulated and measured resonance Raman spectra of pyrene and its substituted analogues in terms of frequencies and intensities, which shows that the calculations can be used reliably to interpret the experimental spectra. With this combined information, it is possible to find criteria to distinguish the compounds under investigation, although many features of their vibrational spectra are similar. © 2005 American Chemical Society.
U2 - 10.1021/jp045360d
DO - 10.1021/jp045360d
M3 - Article
SN - 1089-5639
VL - 109
SP - 2100
EP - 2106
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 10
ER -