Combining in-situ fluorometry and distributed rainfall data provides new insights into natural organic matter transport dynamics in an urban river

Danny Croghan*, Kieran Khamis, Chris Bradley, Anne F. Van Loon, Jon Sadler, David M. Hannah

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Urbanization alters the quality and quantity of Dissolved Organic Matter (DOM) fluxes to rivers potentially leading to water quality problems and impaired ecosystem function. Traditional synoptic and point sampling approaches are generally inadequate for monitoring DOM source dynamics. To identify links between spatial heterogeneity in precipitation and DOM dynamics, we used a unique approach combining high spatial and temporal resolution precipitation datasets featuring point, catchment, and land-cover weighted precipitation to characterise catchment transport dynamics. These datasets were linked to fluorescence records from an urban stream (Bourn Brook, Birmingham, UK). Humic-like fluorescence (HLF: Ex. 365 nm, Em. 490 nm) and Tryptophan-like fluorescence (TLF: Ex. 285 nm, Em. 340 nm) were measured, (plus river flow and turbidity) at 5 min intervals for 10 weeks during Autumn 2017. The relationship between discharge (Q) and concentration (C) for TLF and HLF were strongly chemodynamic at low Q (<Q50) but TLF was chemostatic when Q exceeded this threshold. Figure of eight hysteresis was the most common response type for both HLF and TLF, indicating that DOM sources shift within and between events. Key drivers of DOM dynamics were identified using regression analysis and model outputs using point, catchment-averaged, and land-use weighted precipitation were compared. Antecedent rainfall was identified as the most important predictor (negative relationship) of TLF and HLF change suggesting DOM source exhaustion. Precipitation weighted by land cover showed that urbanization metrics were linked to increased TLF:HLF ratios and changes in hysteresis index. This study presents a novel approach of using land-cover weighted rainfall to enhance mechanistic understanding of DOM controls and sources. In contrast, catchment-average rainfall data have the potential to yield stronger understanding of TLF dynamics. This technique could be integrated with existing high resolution in-situ datasets to enhance our understanding of DOM dynamics in urban rivers.

Original languageEnglish
Article number142731
Pages (from-to)1-12
Number of pages12
JournalScience of the Total Environment
Volume755
Issue numberPart 1
Early online date6 Oct 2020
DOIs
Publication statusPublished - 10 Feb 2021

Funding

This research was supported by an Engineering and Physical Sciences Research Council studentship grant awarded to Danny Croghan (grant number: 1673769 ). We thank Richard Johnson for technical and logistical support with regards to installation of the field equipment and sensor calibration.

Keywords

  • Fluorescence
  • Hydrology
  • Organic matter
  • Urban
  • Water quality

Fingerprint

Dive into the research topics of 'Combining in-situ fluorometry and distributed rainfall data provides new insights into natural organic matter transport dynamics in an urban river'. Together they form a unique fingerprint.

Cite this