TY - JOUR
T1 - Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials
AU - Mendes Tribst, João Paulo
AU - De Morais, Dayana Campanelli
AU - Alonso, Alexandre Abhdala
AU - De Oliveira Dal Piva, Amanda Maria
AU - Souto Borges, Alexandre Luis
N1 - Publisher Copyright:
© 2017 The Journal of Indian Prosthodontic Society.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - Background: The increase of requests for implant-supported prosthesis (ISP) with zirconia as infrastructure has attracted a lot of attention due to its esthetics, biocompatibility, and survival rate similar to metallic infrastructure. The aim of this study was to evaluate the influence of two different framework materials on stress distribution over a bone tissue-simulating material. Materials and Methods: Two ISP were modeled and divided into two infrastructure materials: titanium (Ti) and zirconia. Then, these bars were attached to a modeled jaw with polyurethane properties to simulate bone tissue. An axial load of 200 N was applied on a standardized area for both systems. Maximum principal stress (MPS) on solids and microstrain (MS) generated through the jaw were analyzed by finite element analysis. Results: According to MS, both models showed strains on peri-implant region of the penultimate (same side of the load application) and central implants. For MPS, more stress concentration was slightly higher in the left posterior region for Ti's bar. In prosthetic fixation screws, the MPS prevailed strongly in Ti protocol, while for zirconia's bar, the cervical of the penultimate implant was the one that highlighted larger areas of possible damages. Conclusions: The stress generated in all constituents of the system was not significantly influenced by the framework's material. This allows suggesting that in cases without components, the use of a framework in zirconia has biomechanical behavior similar to that of a Ti bar.
AB - Background: The increase of requests for implant-supported prosthesis (ISP) with zirconia as infrastructure has attracted a lot of attention due to its esthetics, biocompatibility, and survival rate similar to metallic infrastructure. The aim of this study was to evaluate the influence of two different framework materials on stress distribution over a bone tissue-simulating material. Materials and Methods: Two ISP were modeled and divided into two infrastructure materials: titanium (Ti) and zirconia. Then, these bars were attached to a modeled jaw with polyurethane properties to simulate bone tissue. An axial load of 200 N was applied on a standardized area for both systems. Maximum principal stress (MPS) on solids and microstrain (MS) generated through the jaw were analyzed by finite element analysis. Results: According to MS, both models showed strains on peri-implant region of the penultimate (same side of the load application) and central implants. For MPS, more stress concentration was slightly higher in the left posterior region for Ti's bar. In prosthetic fixation screws, the MPS prevailed strongly in Ti protocol, while for zirconia's bar, the cervical of the penultimate implant was the one that highlighted larger areas of possible damages. Conclusions: The stress generated in all constituents of the system was not significantly influenced by the framework's material. This allows suggesting that in cases without components, the use of a framework in zirconia has biomechanical behavior similar to that of a Ti bar.
KW - Biomechanics
KW - dental implants
KW - finite element analysis
UR - http://www.scopus.com/inward/record.url?scp=85027852600&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027852600&partnerID=8YFLogxK
U2 - 10.4103/jips.jips_11_17
DO - 10.4103/jips.jips_11_17
M3 - Article
AN - SCOPUS:85027852600
SN - 0972-4052
VL - 17
SP - 255
EP - 260
JO - Journal of Indian Prosthodontist Society
JF - Journal of Indian Prosthodontist Society
IS - 3
ER -