Connecting the dots: A knowledgeable path generator for commonsense question answering

Peifeng Wang, Nanyun Peng, Filip Ilievski, Pedro Szekely, Xiang Ren

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Abstract

Commonsense question answering (QA) requires background knowledge which is not explicitly stated in a given context. Prior works use commonsense knowledge graphs (KGs) to obtain this knowledge for reasoning. However, relying entirely on these KGs may not suffice, considering their limited coverage and the contextual dependence of their knowledge. In this paper, we augment a general commonsense QA framework with a knowledgeable path generator. By extrapolating over existing paths in a KG with a state-of-the-art language model, our generator learns to connect a pair of entities in text with a dynamic, and potentially novel, multi-hop relational path. Such paths can provide structured evidence for solving commonsense questions without fine-tuning the path generator. Experiments on two datasets show the superiority of our method over previous works which fully rely on knowledge from KGs (with up to 6% improvement in accuracy), across various amounts of training data. Further evaluation suggests that the generated paths are typically interpretable, novel, and relevant to the task.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics Findings of ACL
Subtitle of host publicationEMNLP 2020
PublisherAssociation for Computational Linguistics (ACL)
Pages4129-4140
Number of pages12
ISBN (Electronic)9781952148903
Publication statusPublished - 2020
EventFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020 - Virtual, Online
Duration: 16 Nov 202020 Nov 2020

Publication series

NameFindings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020

Conference

ConferenceFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020
CityVirtual, Online
Period16/11/2020/11/20

Bibliographical note

Publisher Copyright:
© 2020 Association for Computational Linguistics

Fingerprint

Dive into the research topics of 'Connecting the dots: A knowledgeable path generator for commonsense question answering'. Together they form a unique fingerprint.

Cite this