Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

Mark V. Khenkin, Eugene A. Katz*, Antonio Abate, Giorgio Bardizza, Joseph J. Berry, Christoph Brabec, Francesca Brunetti, Vladimir Bulović, Quinn Burlingame, Aldo Di Carlo, Rongrong Cheacharoen, Yi Bing Cheng, Alexander Colsmann, Stephane Cros, Konrad Domanski, Michał Dusza, Christopher J. Fell, Stephen R. Forrest, Yulia Galagan, Diego Di GirolamoMichael Grätzel, Anders Hagfeldt, Elizabeth von Hauff, Harald Hoppe, Jeff Kettle, Hans Köbler, Marina S. Leite, Shengzhong (Frank) Liu, Yueh Lin Loo, Joseph M. Luther, Chang Qi Ma, Morten Madsen, Matthieu Manceau, Muriel Matheron, Michael McGehee, Rico Meitzner, Mohammad Khaja Nazeeruddin, Ana Flavia Nogueira, Çağla Odabaşı, Anna Osherov, Nam Gyu Park, Matthew O. Reese, Francesca De Rossi, Michael Saliba, Ulrich S. Schubert, Henry J. Snaith, Samuel D. Stranks, Wolfgang Tress, Pavel A. Troshin, Vida Turkovic, Sjoerd Veenstra, Iris Visoly-Fisher, Aron Walsh, Trystan Watson, Haibing Xie, Ramazan Yıldırım, Shaik Mohammed Zakeeruddin, Kai Zhu, Monica Lira-Cantu

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.

Original languageEnglish
Pages (from-to)35-49
Number of pages15
JournalNature Energy
Volume5
Issue number1
Early online date22 Jan 2020
DOIs
Publication statusPublished - Jan 2020

Funding

This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M.V.K., E.A.K., V.B. and A.O. thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E.A.K., A.A. and I.V.-F. acknowledge partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M.S.L. thanks the financial support of National Science Foundation (ECCS, award #1610833). S.C., M.Manceau and M.Matheron thank the financial support of European Union’s Horizon 2020 research and innovation programme under grant agreement no 763989 (APOLO project). F.D.R. and T.M.W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P.A.T. acknowledges financial support from the Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q.M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (no. 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO’s contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A.F.N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award no. 1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the US Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the ‘De-risking halide perovskite solar cells’ program of the National Center for Photovoltaics, funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M.Madsen acknowledge ‘Villum Foundation’ for funding of the project CompliantPV, under project no. 13365. M.Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, no. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/ Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (no. 1621103). RC thanks the grants for Development of New Faculty Staff, Ratchadaphiseksomphot Endowment Fund. A.D.C. gratefully acknowledges funding from the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 785219-GrapheneCore2 and no. 764047-ESPResSo). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911-REDT, the Agència de Gestiód’Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referència en Materials Avançats per a l’Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya.

FundersFunder number
European Union’s Horizon 2020 research and innovation program764047-ESPResSo, 785219-GrapheneCore2
Ministry of Science and Technology of China2016YFA0200700
NRF-2014M3A6A7060583
Natural Gas and Biofuels Agency
OrgEnergy Excellence NetworkCTQ2016-81911-REDT
US Department of Energy
WEFO25590.1 PFNM-NM
National Science Foundation
U.S. Department of EnergyDE-AC36-08GO28308
Division of Civil, Mechanical and Manufacturing Innovation1824674
Division of Electrical, Communications and Cyber Systems1610833
Shell
Office of Energy Efficiency and Renewable Energy
United States - Israel Binational Science Foundation2015757
National Renewable Energy Laboratory
Villum Fonden13365
Horizon 2020 Framework Programme756962, 764047, 763989, 785219
Solar Energy Technologies Office
Dorrance Family Foundation8022-00389B
Llywodraeth Cymru
Engineering and Physical Sciences Research CouncilEP/N020863/1
Royal Society
European Research Council
European Cooperation in Science and Technology
Commonwealth Scientific and Industrial Research Organisation
Fundação de Amparo à Pesquisa do Estado de São Paulo2017/11986-5
Generalitat de Catalunya
Agència de Gestió d'Ajuts Universitaris i de Recerca2017 SGR 329, SEV-2017-0706
Ministerio de Economía y CompetitividadENE2016-79282-C5-2-R
Ministry of Science, ICT and Future PlanningNRF-2012M3A6A7054861
National Research Foundation of Korea
Ministry of Economic Affairs1621103
King Abdulaziz City for Science and Technology
Australian Renewable Energy Agency
Bureau of International Cooperation, Chinese Academy of Sciences
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis
Russian Science Foundation19-73-30020
Tata SonsUF150033
Danmarks Frie Forskningsfond

    Fingerprint

    Dive into the research topics of 'Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures'. Together they form a unique fingerprint.

    Cite this