Abstract
We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=0.03-0.58+0.70 (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB!pgpg even when p-g effects are absent. We find that the p-g amplitude for 1.4 MâŠneutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-Tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a103 modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates a1051 erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.
Original language | English |
---|---|
Article number | 061104 |
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | Physical Review Letters |
Volume | 122 |
Issue number | 6 |
DOIs | |
Publication status | Published - 13 Feb 2019 |
Funding
While GW170817 is consistent with models that neglect p - g effects, it is also consistent with a broad range of p - g parameters. The constraints from GW170817 imply that there are ≲ 200 excited modes at f = 100 Hz , assuming all modes grow as rapidly as possible and saturate at their breaking amplitudes ( λ = β = 1 in Eq. (7) of Ref. [27] ) and that the frequency at which modes become unstable is well approximated by f 0 . For comparison, theoretical arguments suggest an upper bound of ∼ 10 3 modes saturating by wave breaking [27] . More modes may be excited if they grow more slowly or saturate below their wave breaking energy. We can also use the measured constraints to place upper limits on the amount of energy dissipated by the p - g instability. As Fig. 3 shows, p - g effects dissipate ≲ 2.7 × 10 51 erg throughout the entire inspiral at 90% confidence. In comparison, GWs carry away ≳ 1 0 53 erg . This implies time-domain phase shifts | Δ ϕ | ≲ 7.6 rad (0.6 orbits) at 100 Hz and | Δ ϕ | ≲ 32 rad (2.6 orbits) at 1000 Hz after accounting for the joint uncertainty in component masses, spins, linear tides, and p - g effects. 3 10.1103/PhysRevLett.122.061104.f3 FIG. 3. Upper limits on the cumulative energy dissipated by the p - g instability as a function of frequency. We note the relatively strong constraints at lower frequencies where p - g effects are more pronounced. A g mode with natural frequency f g is predicted to become unstable at a frequency f crit ≃ 45 Hz ( f g / 10 - 4 λ f dyn ) 1 / 2 , where f dyn is the dynamical frequency of the NS and λ is a slowly varying function typically between 0.1–1 [25,27] . Since the modes grow quickly, the frequency at which the instability saturates is likely close to the frequency at which the modes become unstable ( f 0 ≃ f crit ). If we assume that the observed peak near f 0 ∼ 70 Hz is not due to noise alone, then the maximum a posteriori estimate for f 0 along with approximate values for the masses ( 1.4 M ⊙ ) and radii (11 km) of the components [3] imply f g ≃ 0.5 Hz . With several more signals comparable to GW170817, it should be possible to improve the amplitude constraint to A 0 ≲ 10 - 7 . Obtaining even tighter constraints will likely require many more detections, especially since most events will have smaller SNR. Future measurements will also benefit from a better understanding of how the instability saturates. To date, there have only been detailed theoretical studies of the instability’s threshold and growth rate [23–26] , not its saturation. As a result, we cannot be certain of the fidelity of our phenomenological model. While this Letter was in review, related work was posted [47] with the conclusion that the H ! p g model is strongly favored over the H p g model by a factor of at least 1 0 4 . In Ref. [48] , some of the authors of this work investigate the origin of the discrepancy by analyzing publicly available posterior samples from Ref. [47] . Contrary to the claims in Ref. [47] , they find that samples from Ref. [47] yield B ! p g p g ∼ 1 and therefore conclude that their posterior data, like what is presented here, do not disfavor the H p g model. Reference [48] suggests that the error stems from using too few temperatures when implementing thermodynamic integration. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen, Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen, Germany for provision of computational resources. N. Weinberg was supported in part by NASA Grant No. NNX14AB40G. [1] 1 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 119 , 161101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101 [2] 2 B. P. Abbott , R. Abbott , T. D. Abbott , F. Acernese , K. Ackley , C. Adams , T. Adams , P. Addesso ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. X 9 , 011001 ( 2019 ). PRXHAE 2160-3308 10.1103/PhysRevX.9.011001 [3] 3 B. P. Abbott , R. Abbott , T. D. Abbott , F. Acernese , K. Ackley , C. Adams , T. Adams , P. Addesso ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 121 , 161101 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.121.161101 [4] 4 S. De , D. Finstad , J. M. Lattimer , D. A. Brown , E. Berger , and C. M. Biwer , Phys. Rev. Lett. 121 , 091102 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.121.091102 [5] 5 E. E. Flanagan and T. Hinderer , Phys. Rev. D 77 , 021502 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.77.021502 [6] 6 LIGO Scientific Collaboration , Classical Quantum Gravity 32 , 074001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001 [7] 7 F. Acernese , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [8] 8 B. P. Abbott , Astrophys. J. Lett. 848 , L13 ( 2017 ). AJLEEY 2041-8213 10.3847/2041-8213/aa920c [9] 9 LIGO Scientific and Virgo Collaborations , Astrophys. J. Lett. 851 , L16 ( 2017 ). AJLEEY 2041-8213 10.3847/2041-8213/aa9a35 [10] 10 LIGO Scientific and Virgo Collaborations , Astrophys. J. Lett. 850 , L39 ( 2017 ). AJLEEY 2041-8213 10.3847/2041-8213/aa9478 [11] 11 D. Radice , A. Perego , F. Zappa , and S. Bernuzzi , Astrophys. J. Lett. 852 , L29 ( 2018 ). AJLEEY 2041-8213 10.3847/2041-8213/aaa402 [12] 12 M. W. Coughlin , T. Dietrich , Z. Doctor , D. Kasen , S. Coughlin , A. Jerkstrand , G. Leloudas , O. McBrien , B. D. Metzger , R. O’Shaughnessy , and S. J. Smartt , arXiv:1805.09371 . [13] 13 T. Hinderer , A. Taracchini , F. Foucart , A. Buonanno , J. Steinhoff , M. Duez , L. E. Kidder , H. P. Pfeiffer , M. A. Scheel , B. Szilagyi , K. Hotokezaka , K. Kyutoku , M. Shibata , and C. W. Carpenter , Phys. Rev. Lett. 116 , 181101 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.181101 [14] 14 N. Andersson and W. C. G. Ho , Phys. Rev. D 97 , 023016 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.023016 [15] 15 D. Lai , Mon. Not. R. Astron. Soc. 270 , 611 ( 1994 ). MNRAA4 0035-8711 10.1093/mnras/270.3.611 [16] 16 A. Reisenegger and P. Goldreich , Astrophys. J. 426 , 688 ( 1994 ). ASJOAB 1538-4357 10.1086/174105 [17] 17 W. C. G. Ho and D. Lai , Mon. Not. R. Astron. Soc. 308 , 153 ( 1999 ). MNRAA4 0035-8711 10.1046/j.1365-8711.1999.02703.x [18] 18 D. Lai and Y. Wu , Phys. Rev. D 74 , 024007 ( 2006 ). PRVDAQ 1550-7998 10.1103/PhysRevD.74.024007 [19] 19 É. É. Flanagan and É. Racine , Phys. Rev. D 75 , 044001 ( 2007 ). PRVDAQ 1550-7998 10.1103/PhysRevD.75.044001 [20] 20 H. Yu and N. N. Weinberg , Mon. Not. R. Astron. Soc. 464 , 2622 ( 2017 ). MNRAA4 0035-8711 10.1093/mnras/stw2552 [21] 21 H. Yu and N. N. Weinberg , Mon. Not. R. Astron. Soc. 470 , 350 ( 2017 ). MNRAA4 0035-8711 10.1093/mnras/stx1188 [22] 22 W. Xu and D. Lai , Phys. Rev. D 96 , 083005 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.083005 [23] 23 N. N. Weinberg , P. Arras , and J. Burkart , Astrophys. J. 769 , 121 ( 2013 ). ASJOAB 1538-4357 10.1088/0004-637X/769/2/121 [24] 24 T. Venumadhav , A. Zimmerman , and C. M. Hirata , Astrophys. J. 781 , 23 ( 2014 ). ASJOAB 1538-4357 10.1088/0004-637X/781/1/23 [25] 25 N. N. Weinberg , Astrophys. J. 819 , 109 ( 2016 ). ASJOAB 1538-4357 10.3847/0004-637X/819/2/109 [26] 26 Y. Zhou and F. Zhang , Astrophys. J. 849 , 114 ( 2017 ). ASJOAB 1538-4357 10.3847/1538-4357/aa906e [27] 27 R. Essick , S. Vitale , and N. N. Weinberg , Phys. Rev. D 94 , 103012 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.103012 [28] 28 A. Buonanno , B. R. Iyer , E. Ochsner , Y. Pan , and B. S. Sathyaprakash , Phys. Rev. D 80 , 084043 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.80.084043 [29] 29 C. Cutler and E. E. Flanagan , Phys. Rev. D 49 , 2658 ( 1994 ). PRVDAQ 0556-2821 10.1103/PhysRevD.49.2658 [30] 30 M. Agathos , W. Del Pozzo , T. G. F. Li , C. Van Den Broeck , J. Veitch , and S. Vitale , Phys. Rev. D 89 , 082001 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.082001 [31] 31 C. Pankow , K. Chatziioannou , E. A. Chase , T. B. Littenberg , M. Evans , J. McIver , N. J. Cornish , C.-J. Haster , J. Kanner , V. Raymond , S. Vitale , and A. Zimmerman , Phys. Rev. D 98 , 084016 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084016 [32] 32 J. C. Driggers , arXiv:1806.00532 . [33] 33 J. C. Driggers , M. Evans , K. Pepper , and R. Adhikari , Rev. Sci. Instrum. 83 , 024501 ( 2012 ). RSINAK 0034-6748 10.1063/1.3675891 [34] 34 G. D. Meadors , K. Kawabe , and K. Riles , Classical Quantum Gravity 31 , 105014 ( 2014 ). CQGRDG 0264-9381 10.1088/0264-9381/31/10/105014 [35] 35 V. Tiwari , M. Drago , V. Frolov , S. Klimenko , G. Mitselmakher , V. Necula , G. Prodi , V. Re , F. Salemi , G. Vedovato , and I. Yakushin , Classical Quantum Gravity 32 , 165014 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/16/165014 [36] 36 C. Cahillane , J. Betzwieser , D. A. Brown , E. Goetz , E. D. Hall , K. Izumi , S. Kandhasamy , S. Karki , J. S. Kissel , G. Mendell , R. L. Savage , D. Tuyenbayev , A. Urban , A. Viets , M. Wade , and A. J. Weinstein , Phys. Rev. D 96 , 102001 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.102001 [37] 37 A. D. Viets , M. Wade , A. L. Urban , S. Kandhasamy , J. Betzwieser , D. A. Brown , J. Burguet-Castell , C. Cahillane , E. Goetz , K. Izumi , S. Karki , J. S. Kissel , G. Mendell , R. L. Savage , X. Siemens , D. Tuyenbayev , and A. J. Weinstein , Classical Quantum Gravity 35 , 095015 ( 2018 ). CQGRDG 0264-9381 10.1088/1361-6382/aab658 [38] 38 N. J. Cornish and T. B. Littenberg , Classical Quantum Gravity 32 , 135012 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/13/135012 [39] 39 T. B. Littenberg and N. J. Cornish , Phys. Rev. D 91 , 084034 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084034 [40] 40 J. Veitch , Phys. Rev. D 91 , 042003 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.042003 [41] 41 LIGO Scientific Collaboration , DOI: 10.7935/GT1W-FZ16 ( 2018 ). [42] 42 J. M. Dickey and B. P. Lientz , Ann. Math. Stat. 41 , 214 ( 1970 ). AASTAD 0003-4851 10.1214/aoms/1177697203 [43] 43 I. Verdinelli and L. Wasserman , J. Am. Stat. Assoc. 90 , 614 ( 1995 ). JSTNAL 0162-1459 10.1080/01621459.1995.10476554 [44] 44 E.-J. Wagenmakers , T. Lodewyckx , H. Kuriyal , and R. Grasman , Cogn. Psychol. 60 , 158 ( 2010 ). CGPSBQ 0010-0285 10.1016/j.cogpsych.2009.12.001 [45] 45 J. Skilling , Bayesian Anal. 1 , 833 ( 2006 ). [46] 46 N. Lartillot and H. Philippe , Syst. Biol. 55 , 195 ( 2006 ). SYBIER 1076-836X 10.1080/10635150500433722 [47] 47 S. Reyes and D. A. Brown , arXiv:1808.07013 . [48] 48 R. Essick and N. N. Weinberg , arXiv:1809.00264 .
Funders | Funder number |
---|---|
Not added | ST/N005422/1, ST/M005844/1, ST/N00003X/1, ST/N005406/2, ST/K000845/1, ST/N000633/1, ST/N000668/1, ST/N000072/1, ST/P000258/1, ST/H002006/1, ST/J00166X/1, ST/N005430/1 |
National Science Foundation | 1707965, 1708081, 1921006, 1806824, 1707835, 1806461, 1806165, 1806990 |
Directorate for Mathematical and Physical Sciences | |
National Aeronautics and Space Administration | NNX14AB40G |
Kavli Foundation | |
National Kidney Foundation of Iowa | |
Canadian Institute for Advanced Research | |
Natural Sciences and Engineering Research Council of Canada | |
Ontario Ministry of Economic Development and Innovation | |
Science and Technology Facilities Council | PPA/G/S/2002/00652, Gravitational Waves, ST/I006269/1 |
Leverhulme Trust | |
Royal Society | |
Scottish Funding Council | |
Scottish Universities Physics Alliance | |
European Commission | |
Australian Research Council | |
Department of Science and Technology, Ministry of Science and Technology, India | |
Council of Scientific and Industrial Research, India | |
Japan Society for the Promotion of Science | 18F18013, 18H03698 |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | |
National Natural Science Foundation of China | |
Science and Engineering Research Board | |
Russian Foundation for Basic Research | |
Research Grants Council, University Grants Committee | |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | |
Generalitat Valenciana | |
Hungarian Scientific Research Fund | |
National Research Foundation of Korea | |
Instituto Nazionale di Fisica Nucleare | |
Narodowe Centrum Nauki | |
Ministry of Human Resource Development | |
Ministry of Science and Technology, Taiwan | |
Centre National de la Recherche Scientifique | |
Russian Science Foundation | |
European Regional Development Fund | |
Universitat de les Illes Balears | |
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal | |
Agencia Estatal de Investigación | |
Ministério da Ciência, Tecnologia, Inovações e Comunicações | |
Istituto Nazionale di Fisica Nucleare | |
ICTP South American Institute for Fundamental Research |