TY - JOUR
T1 - Constructive canonicity of inductive inequalities
AU - Conradie, Willem
AU - Palmigiano, Alessandra
PY - 2020/8/5
Y1 - 2020/8/5
N2 - We prove the canonicity of inductive inequalities in a constructive meta-theory, for classes of logics algebraically captured by varieties of normal and regular lattice ex-pansions. This result encompasses Ghilardi-Meloni’s and Suzuki’s constructive canonicity results for Sahlqvist formulas and inequalities, and is based on an application of the tools of unified correspondence theory. Specifically, we provide an alternative interpretation of the language of the algorithm ALBA for lattice expansions: nominal and conominal variables are respectively interpreted as closed and open elements of canonical extensions of normal/regular lattice expansions, rather than as completely join-irreducible and meet-irreducible elements of perfect normal/regular lattice expansions. We show the correctness of ALBA with respect to this interpretation. From this fact, the constructive canonicity of the inequalities on which ALBA succeeds follows by an adaptation of the standard argument. The claimed result then follows as a consequence of the success of ALBA on inductive inequalities.
AB - We prove the canonicity of inductive inequalities in a constructive meta-theory, for classes of logics algebraically captured by varieties of normal and regular lattice ex-pansions. This result encompasses Ghilardi-Meloni’s and Suzuki’s constructive canonicity results for Sahlqvist formulas and inequalities, and is based on an application of the tools of unified correspondence theory. Specifically, we provide an alternative interpretation of the language of the algorithm ALBA for lattice expansions: nominal and conominal variables are respectively interpreted as closed and open elements of canonical extensions of normal/regular lattice expansions, rather than as completely join-irreducible and meet-irreducible elements of perfect normal/regular lattice expansions. We show the correctness of ALBA with respect to this interpretation. From this fact, the constructive canonicity of the inequalities on which ALBA succeeds follows by an adaptation of the standard argument. The claimed result then follows as a consequence of the success of ALBA on inductive inequalities.
KW - Algorithmic correspondence theory
KW - Constructive canonicity
KW - Lattice theory
KW - Modal logic
KW - Sahlqvist theory
UR - http://www.scopus.com/inward/record.url?scp=85090779479&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090779479&partnerID=8YFLogxK
U2 - 10.23638/LMCS-16(3:8)2020
DO - 10.23638/LMCS-16(3:8)2020
M3 - Article
AN - SCOPUS:85090779479
SN - 1860-5974
VL - 16
SP - 8:1-8:39
JO - Logical Methods in Computer Science
JF - Logical Methods in Computer Science
IS - 3
M1 - 8
ER -