Continual Class Incremental Learning for CT Thoracic Segmentation

Abdelrahman Elskhawy, Aneta Lisowska, Matthias Keicher, Joseph Henry, Paul Thomson, Nassir Navab

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Abstract

Deep learning organ segmentation approaches require large amounts of annotated training data, which is limited in supply due to reasons of confidentiality and the time required for expert manual annotation. Therefore, being able to train models incrementally without having access to previously used data is desirable. A common form of sequential training is fine tuning (FT). In this setting, a model learns a new task effectively, but loses performance on previously learned tasks. The Learning without Forgetting (LwF) approach addresses this issue via replaying its own prediction for past tasks during model training. In this work, we evaluate FT and LwF for class incremental learning in multi-organ segmentation using the publicly available AAPM dataset. We show that LwF can successfully retain knowledge on previous segmentations, however, its ability to learn a new class decreases with the addition of each class. To address this problem we propose an adversarial continual learning segmentation approach (ACLSeg), which disentangles feature space into task-specific and task-invariant features. This enables preservation of performance on past tasks and effective acquisition of new knowledge.
Original languageEnglish
Title of host publicationDomain Adaptation and Representation Transfer, and Distributed and Collaborative Learning - 2nd MICCAI Workshop, DART 2020, and 1st MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Proceedings
EditorsS. Albarqouni, S. Bakas, K. Kamnitsas, M.J. Cardoso, B. Landman, W. Li, F. Milletari, N. Rieke, Z. Xu
PublisherSpringer Science and Business Media Deutschland GmbH
Pages106-116
ISBN (Print)9783030605476
DOIs
Publication statusPublished - 2020
Externally publishedYes
Event2nd MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the 1st MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference2nd MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the 1st MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period4/10/208/10/20

Fingerprint

Dive into the research topics of 'Continual Class Incremental Learning for CT Thoracic Segmentation'. Together they form a unique fingerprint.

Cite this