Abstract
The guanine nucleobase can self-assemble into tetrameric or ribbon structures on surfaces or in solution. The origin for the occurrence of different aggregation patterns has not yet been investigated. Herein, a quantum chemical study on the different self-assembled structures of guanine and xanthine by using dispersion-corrected DFT is presented. Theoretical investigations can be used to explain, from an electronic point of view, the differences between the experimental findings. With quantitative Kohn–Sham molecular orbital theory and the accompanying energy decomposition analysis, the hydrogen-bonding mechanism within the guanine ribbons can be disclosed and the preferred self-assembled structures under different experimental conditions can be explained. An important role of the σ-electronic system in the guanine self-assembled structures is revealed as the main factor for the switch between different arrangements on surfaces and in crystals.
Original language | English |
---|---|
Article number | 201604830 |
Pages (from-to) | 3042-3050 |
Number of pages | 9 |
Journal | Chemistry - A European Journal |
Volume | 23 |
Issue number | 13 |
Early online date | 29 Nov 2016 |
DOIs | |
Publication status | Published - 2 Mar 2017 |
Funding
G.P. would like to thank the Marie Curie Intra European Fellowship within the 7th European Community Framework Programme and TAMOP-4.2.2.C-11/1/KONV-2012-0010 for financial support. C.F.G. acknowledges financial support from the Netherlands Organization for Scientific Research NWO (ECHO).
Funders | Funder number |
---|---|
Netherlands Organization for Scientific Research NWO | |
Seventh Framework Programme | -2012-0010 |
Keywords
- cooperative effects
- G-quadruplexes
- hydrogen bonds
- nanostructures
- self-assembly