TY - JOUR
T1 - Coordination chemistry of 5,6,7-trimethyl-[1,2,4]triazolo[1,5-a]pyrimidine with first-row transition-metal salts
T2 - Synthesis, spectroscopy and single-crystal structures, with counter-anion dependence of the structures
AU - Huub Adriaanse, J.
AU - Askes, S.H.C.
AU - van Bree, Y.
AU - van Oudheusden, S.
AU - van den Bos, E.D.
AU - Günay, E.
AU - Mutikainen, I.
AU - Turpeinen, U.
AU - van Albada, G.A.
AU - Haasnoot, J.G.
AU - Reedijk, J.
PY - 2009/9/23
Y1 - 2009/9/23
N2 - A variety of new coordination compounds with transition-metal salts and the ligand trimethyl[1,2,4]triazolo[1,5-a]pyrimidine (abbreviated as tmtp) is described, together with several of their 3D crystal structures and spectroscopic and magnetic properties. The compounds were selected based on the coordination ability of the counterion, halide, nitrate, sulfate, thiocyanate and perchlorate. The formed coordination compounds and their coordination numbers were found to be strongly dependent on both the cation and the used counter-anion. The several compounds studied have the following structural formulae: [CuCl2(tmtp)2], [CuBr2(tmtp)2], [ZnBr2(tmtp)2], [Cu(NO3)2(tmtp)2], [CuSO4(tmtp)2]2(H2O)(MeOH), [Cu(H2O)(NCS)2(tmtp)2], [Zn(NCS)2(tmtp)2], [Cd(NCS)2(tmtp)2] and [M(H2O)2(tmtp)4](BF4)2, in which M = Co, Ni, Zn. The new coordination compounds have been further characterized by NMR, (far-)IR and LF spectra, as well as by C, H, N element analyses, and EPR spectra for the Cu(II) compounds. The coordination around the metal varies from 4 (Zn, Cu), via 5 (Cu) to 6 (for Co, Cu and Cd). The anions usually complete the coordination sphere; only the Co and Zn compounds with the tetrafluoridoborate anions have no coordinated anions, but water ligands complete the octahedral coordination sphere. In the 5-coordinated [Cu(H2O)(NCS)2(tmtp)2] water completes the square pyramid geometry. © 2009 Elsevier Ltd. All rights reserved.
AB - A variety of new coordination compounds with transition-metal salts and the ligand trimethyl[1,2,4]triazolo[1,5-a]pyrimidine (abbreviated as tmtp) is described, together with several of their 3D crystal structures and spectroscopic and magnetic properties. The compounds were selected based on the coordination ability of the counterion, halide, nitrate, sulfate, thiocyanate and perchlorate. The formed coordination compounds and their coordination numbers were found to be strongly dependent on both the cation and the used counter-anion. The several compounds studied have the following structural formulae: [CuCl2(tmtp)2], [CuBr2(tmtp)2], [ZnBr2(tmtp)2], [Cu(NO3)2(tmtp)2], [CuSO4(tmtp)2]2(H2O)(MeOH), [Cu(H2O)(NCS)2(tmtp)2], [Zn(NCS)2(tmtp)2], [Cd(NCS)2(tmtp)2] and [M(H2O)2(tmtp)4](BF4)2, in which M = Co, Ni, Zn. The new coordination compounds have been further characterized by NMR, (far-)IR and LF spectra, as well as by C, H, N element analyses, and EPR spectra for the Cu(II) compounds. The coordination around the metal varies from 4 (Zn, Cu), via 5 (Cu) to 6 (for Co, Cu and Cd). The anions usually complete the coordination sphere; only the Co and Zn compounds with the tetrafluoridoborate anions have no coordinated anions, but water ligands complete the octahedral coordination sphere. In the 5-coordinated [Cu(H2O)(NCS)2(tmtp)2] water completes the square pyramid geometry. © 2009 Elsevier Ltd. All rights reserved.
U2 - 10.1016/j.poly.2009.07.001
DO - 10.1016/j.poly.2009.07.001
M3 - Article
SN - 0277-5387
VL - 28
SP - 3143
EP - 3149
JO - Polyhedron
JF - Polyhedron
IS - 14
ER -