Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Abstract

Despite nearly decade-long mitigation efforts in academia and industry, the community is yet to find a practical solution to the Rowhammer vulnerability. Comprehensive software mitigations require complex changes to commodity systems, yielding significant run-time overhead and deterring practical adoption. Hardware mitigations, on the other hand, have generally grown more robust and efficient, but are difficult to deploy on commodity systems. Until recently, ECC memory implemented by the memory controller on server platforms seemed to provide the best of both worlds: use hardware features already on commodity systems to efficiently turn Rowhammer into a denial-of-service attack vector. Unfortunately, researchers have recently shown that attackers can perform one-bit-at-a-time memory templating and mount ECC-aware Rowhammer attacks.

In this paper, we reconsider ECC memory as an avenue for Rowhammer mitigations and show that not all hope is lost. In particular, we show that it is feasible to devise a software-based design to both efficiently and effectively harden commodity ECC memory against ECC-aware Rowhammer attacks. To support this claim, we present Copy-on-Flip (CoF), an ECC-based software mitigation which uses a combination of memory _migration_ and _offlining_ to stop Rowhammer attacks on commodity server systems in a practical way. The key idea is to let the operating system interpose on all the error correction events and offline the vulnerable victim page as soon as the attacker has successfully templated a sufficient number of bit flips---while transparently migrating the victim data to a new page. We present a CoF prototype on Linux, where we also show it is feasible to operate simple memory management changes to support migration for the relevant user and kernel memory pages. Our evaluation shows CoF incurs low performance and memory overhead, while significantly reducing the Rowhammer attack surface. On typical benchmarks such as SPEC CPU2017 and Google Chrome, CoF reports a $<1.5%$ overhead, and, on extreme I/O-intensive scenarios (saturated nginx), up to $sim11%$.
Original languageEnglish
Title of host publication30th Annual Network and Distributed System Security Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023
PublisherNDSS
Pages1-15
Number of pages15
ISBN (Electronic)1891562835, 9781891562839
DOIs
Publication statusPublished - 2023

Funding

We thank the anonymous reviewers for their feedback. We’d also like to thank Daniel Andriesse for his help with the ECC error injection testbed. This work was supported by Intel Corporation through the Side Channel Vulnerability ISRA and by NWO through projects “Theseus” and “INTERSECT”.

FundersFunder number
Intel Corporation
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Fingerprint

    Dive into the research topics of 'Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks'. Together they form a unique fingerprint.

    Cite this