Covalency in Resonance-Assisted Halogen Bonds Demonstrated with Cooperativity in N-Halo-Guanine Quartets

L.P. Wolters, N.W.G. Smits, C. Fonseca Guerra

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Halogen bonds are shown to possess the same characteristics as hydrogen bonds: charge transfer, resonance assistance and cooperativity. This follows from the computational analyses of the structure and bonding in N-halo-base pairs and quartets. The objective was to achieve an understanding of the nature of resonance-assisted halogen bonds (RAXB): how they resemble or differ from the better understood resonance-assisted hydrogen bonds (RAHB) in DNA. We present an accurate physical model of the RAXB based on the molecular orbital theory, which is derived from the corresponding energy decomposition analyses and study of the charge distribution. We show that the RAXB arise from classical electrostatic interaction and also receive strengthening from donor-acceptor interactions within the σ-electron system. Similar to RAHB, there is also a small stabilization by π-electron delocalization. This resemblance leads to prove cooperativity in N-halo-guanine quartets, which originates from the charge separation that occurs with donor-acceptor orbital interactions in the σ-electron system.
Original languageEnglish
Pages (from-to)1585-1592
JournalPhysical Chemistry Chemical Physics - PCCP
Volume17
Issue number3
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Covalency in Resonance-Assisted Halogen Bonds Demonstrated with Cooperativity in N-Halo-Guanine Quartets'. Together they form a unique fingerprint.

Cite this