Abstract
Spatio-temporal modeling is widely recognized as a promising means for predicting crime patterns. Despite their enormous potential, the available methods are still in their infancy. A lot of research focuses on crime hotspot detection and geographic crime clusters, while a systematic approach to include the temporal component of the underlying crime distributions is still under-researched. In this paper, we gain further insight in predictive crime modeling by including a spatio-temporal interaction component in the prediction of residential burglaries. Based on an extensive dataset, we show that including additive space-time interactions leads to significantly better predictions.
Original language | English |
---|---|
Pages (from-to) | 214-222 |
Number of pages | 9 |
Journal | International Journal on Advances in Security |
Volume | 11 |
Issue number | 3&4 |
Publication status | Published - 30 Dec 2018 |
Keywords
- Predictive analytics
- forecasting
- spatio-temporal modeling
- residential burglary