TY - JOUR
T1 - Crustal structure of the Innuitian region of Arctic Canada and Greenland from gravity modelling: implications for the Palaeogene Eurekan Orogen
AU - Oakey, Gordon N.
AU - Stephenson, R.A.
PY - 2008
Y1 - 2008
N2 - New gravity observations collected over Ellesmere Island and Axel Heiberg Island have been integrated with existing Canadian and Danish data sets to produce a comprehensive regional compilation over the Innuitian Region of the Canadian and Greenland High Arctic. This compilation has provided quantitative assessment of the geometry of the plate boundary between northern Greenland and Ellesmere Island and crustal structures across the Cretaceous-Palaeogene Eurekan Orogen. A large amplitude linear gravity low - Nares Strait Gravity Low (NSGL) (<-160 mGal) - extends obliquely across Nares Strait from northern Greenland to Ellesmere Island. This feature closely correlates with the distribution of the Palaeozoic Franklinian Margin sequences and is cross-cut by the Cenozoic Eurekan Frontal Thrust (EFT), which represents the mappable western limit of the undeformed Greenland Plate associated with the Eurekan Orogen. Newly identified linear gravity features occur north of the NSGL: the Hazen Plateau Gravity High (HPGH), corresponding with the low-lying topography of the Hazen Trough and the Grantland Gravity Low (GGL), over the elevated topography of the Grantland Uplift. Gravity models for profiles crossing the NSGL, the HPGH and the GGL indicate that the long-wavelength component of the gravity anomalies is produced by systematic variations in Moho depth. Although significant Eurekan-age thrusting and thickening of low-density Palaeozoic strata is observed on Ellesmere Island, locally contributing to the mass-deficit generating the NSGL, equivalent strata on Greenland are undeformed. The NSGL is interpreted to be primarily the signature of the remnant (Early Palaeozoic) margin with the downwards flexure of the crust beneath a northwards thickening sedimentary wedge rather than purely the result of crustal thickening from the Eurekan Orogeny. Digital bathymetry and sediment thickness data were used to determine a residual 'crustal' gravity field, which in turn was used to calculate depth-to-Moho and crustal thicknesses. These have been interpreted in terms of crustal affinity and crustal thinning and thickening processes associated with the Late Cretaceous-Palaeogene plate tectonics of the area. Significant crustal thinning is observed beneath the Lancaster Basin, between Baffin Island and Devon Island, corresponding with 40 km of separation. This is interpreted to be a failed rift-arm of the Eocene spreading system in Baffin Bay. A Fourier-domain transfer function analysis (Q) determined an intermediate average crustal strength (flexural rigidity of 10
AB - New gravity observations collected over Ellesmere Island and Axel Heiberg Island have been integrated with existing Canadian and Danish data sets to produce a comprehensive regional compilation over the Innuitian Region of the Canadian and Greenland High Arctic. This compilation has provided quantitative assessment of the geometry of the plate boundary between northern Greenland and Ellesmere Island and crustal structures across the Cretaceous-Palaeogene Eurekan Orogen. A large amplitude linear gravity low - Nares Strait Gravity Low (NSGL) (<-160 mGal) - extends obliquely across Nares Strait from northern Greenland to Ellesmere Island. This feature closely correlates with the distribution of the Palaeozoic Franklinian Margin sequences and is cross-cut by the Cenozoic Eurekan Frontal Thrust (EFT), which represents the mappable western limit of the undeformed Greenland Plate associated with the Eurekan Orogen. Newly identified linear gravity features occur north of the NSGL: the Hazen Plateau Gravity High (HPGH), corresponding with the low-lying topography of the Hazen Trough and the Grantland Gravity Low (GGL), over the elevated topography of the Grantland Uplift. Gravity models for profiles crossing the NSGL, the HPGH and the GGL indicate that the long-wavelength component of the gravity anomalies is produced by systematic variations in Moho depth. Although significant Eurekan-age thrusting and thickening of low-density Palaeozoic strata is observed on Ellesmere Island, locally contributing to the mass-deficit generating the NSGL, equivalent strata on Greenland are undeformed. The NSGL is interpreted to be primarily the signature of the remnant (Early Palaeozoic) margin with the downwards flexure of the crust beneath a northwards thickening sedimentary wedge rather than purely the result of crustal thickening from the Eurekan Orogeny. Digital bathymetry and sediment thickness data were used to determine a residual 'crustal' gravity field, which in turn was used to calculate depth-to-Moho and crustal thicknesses. These have been interpreted in terms of crustal affinity and crustal thinning and thickening processes associated with the Late Cretaceous-Palaeogene plate tectonics of the area. Significant crustal thinning is observed beneath the Lancaster Basin, between Baffin Island and Devon Island, corresponding with 40 km of separation. This is interpreted to be a failed rift-arm of the Eocene spreading system in Baffin Bay. A Fourier-domain transfer function analysis (Q) determined an intermediate average crustal strength (flexural rigidity of 10
U2 - 10.1111/j.1365-246X.2008.03784.x
DO - 10.1111/j.1365-246X.2008.03784.x
M3 - Article
SN - 0956-540X
VL - 173
SP - 1039
EP - 1063
JO - Geophysical Journal International
JF - Geophysical Journal International
ER -