Abstract
The knowledge extraction is an important element of the e-Health system. In this paper, we introduce a new method for decision rules extraction called Graph-based Rules Inducer to support the medical interview in the diabetes treatment. The emphasis is put on the capability of hidden context change tracking. The context is understood as a set of all factors affecting patient condition. In order to follow context changes, a forgetting mechanism with a forgetting factor is implemented in the proposed algorithm. Moreover, to aggregate data, a graph representation is used and a limitation of the search space is proposed to protect from overfitting. We demonstrate the advantages of our approach in comparison with other methods through an empirical study on the Electricity benchmark data set in the classification task. Subsequently, our method is applied in the diabetes treatment as a tool supporting medical interviews.
Original language | English |
---|---|
Pages (from-to) | 521-546 |
Number of pages | 26 |
Journal | Knowledge and Information Systems |
Volume | 34 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jan 2013 |
Externally published | Yes |
Keywords
- Decision rules
- Diabetes
- Forgetting
- Hidden context
- Incremental learning