TY - JOUR

T1 - Density functional theory for strongly-interacting electrons: Perspectives for Physics and Chemistry

AU - Gori Giorgi, P.

AU - Seidl, M.

PY - 2010

Y1 - 2010

N2 - Improving the accuracy and thus broadening the applicability of electronic density functional theory (DFT) is crucial to many research areas, from material science, to theoretical chemistry, biophysics and biochemistry. In the last three years, the mathematical structure of the strong-interaction limit of density functional theory has been uncovered, and exact information on this limit has started to become available. The aim of this paper is to give a perspective on how this new piece of exact information can be used to treat situations that are problematic for standard Kohn-Sham DFT. One way to use the strong-interaction limit, more relevant for solid-state physical devices, is to define a new framework to do practical, non-conventional, DFT calculations in which a strong-interacting reference system is used instead of the traditional non-interacting one of Kohn and Sham. Another way to proceed, more related to chemical applications, is to include the exact treatment of the strong-interaction limit into approximate exchange-correlation energy density functionals in order to describe difficult situations such as the breaking of the chemical bond. © 2010 the Owner Societies.

AB - Improving the accuracy and thus broadening the applicability of electronic density functional theory (DFT) is crucial to many research areas, from material science, to theoretical chemistry, biophysics and biochemistry. In the last three years, the mathematical structure of the strong-interaction limit of density functional theory has been uncovered, and exact information on this limit has started to become available. The aim of this paper is to give a perspective on how this new piece of exact information can be used to treat situations that are problematic for standard Kohn-Sham DFT. One way to use the strong-interaction limit, more relevant for solid-state physical devices, is to define a new framework to do practical, non-conventional, DFT calculations in which a strong-interacting reference system is used instead of the traditional non-interacting one of Kohn and Sham. Another way to proceed, more related to chemical applications, is to include the exact treatment of the strong-interaction limit into approximate exchange-correlation energy density functionals in order to describe difficult situations such as the breaking of the chemical bond. © 2010 the Owner Societies.

U2 - 10.1039/c0cp01061h

DO - 10.1039/c0cp01061h

M3 - Article

SN - 1463-9076

VL - 12

SP - 14405

EP - 14419

JO - Physical Chemistry Chemical Physics - PCCP

JF - Physical Chemistry Chemical Physics - PCCP

ER -