TY - JOUR
T1 - Development of the East Asian monsoon
T2 - Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma
AU - Wan, Shiming
AU - Li, Anchun
AU - Clift, Peter D.
AU - Stuut, Jan Berend W.
PY - 2007/10/22
Y1 - 2007/10/22
N2 - We here reconstruct the past change of the East Asian monsoon since 20 Ma using samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea based on a multi-proxy approach including a monomineralic quartz isolation procedure, identification of clay minerals by X-ray Diffraction (XRD) and grain-size analysis of isolated terrigenous materials. Terrigenous supply to ODP Site 1146 was dominated by changes in the strength of multiple sources and transport processes. Grain-size data modeled by an end-member modeling algorithm indicate that eolian dust from the arid Asian inland and fluvial input have contributed on average 20% and 80% of total terrigenous material to ODP Site 1146, respectively. Specifically, about 40-53% of the total (quartz + feldspar) and only 6-11% of the total clay is related to eolian supply at the study site. Detailed analysis of the sedimentary environment, and clay minerals combined with previous studies shows that smectite originates mainly from Luzon, kaolinite from the Pearl River and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The proportion and mass accumulation rate (MAR) of the coarsest end-member EM1 (interpreted as eolian dust), ratios of (illite + chlorite)/smectite, (quartz + feldspar)% and mean grain-size of terrigenous materials at ODP Site 1146 were adopted as proxies for East Asian monsoon evolution. The consistent variation of these independent proxies since 20 Ma shows three profound shifts in the intensity of East Asian winter monsoon relative to summer monsoon, as well as aridity of the Asian continent, occurred at ∼ 15 Ma, ∼ 8 Ma and the youngest at about 3 Ma. In comparison, the summer monsoon intensified contemporaneously with the winter monsoon at 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at ∼ 15 Ma, 8 Ma and 3 Ma.
AB - We here reconstruct the past change of the East Asian monsoon since 20 Ma using samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea based on a multi-proxy approach including a monomineralic quartz isolation procedure, identification of clay minerals by X-ray Diffraction (XRD) and grain-size analysis of isolated terrigenous materials. Terrigenous supply to ODP Site 1146 was dominated by changes in the strength of multiple sources and transport processes. Grain-size data modeled by an end-member modeling algorithm indicate that eolian dust from the arid Asian inland and fluvial input have contributed on average 20% and 80% of total terrigenous material to ODP Site 1146, respectively. Specifically, about 40-53% of the total (quartz + feldspar) and only 6-11% of the total clay is related to eolian supply at the study site. Detailed analysis of the sedimentary environment, and clay minerals combined with previous studies shows that smectite originates mainly from Luzon, kaolinite from the Pearl River and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The proportion and mass accumulation rate (MAR) of the coarsest end-member EM1 (interpreted as eolian dust), ratios of (illite + chlorite)/smectite, (quartz + feldspar)% and mean grain-size of terrigenous materials at ODP Site 1146 were adopted as proxies for East Asian monsoon evolution. The consistent variation of these independent proxies since 20 Ma shows three profound shifts in the intensity of East Asian winter monsoon relative to summer monsoon, as well as aridity of the Asian continent, occurred at ∼ 15 Ma, ∼ 8 Ma and the youngest at about 3 Ma. In comparison, the summer monsoon intensified contemporaneously with the winter monsoon at 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at ∼ 15 Ma, 8 Ma and 3 Ma.
KW - Clay minerals
KW - East Asian monsoon
KW - Grain size
KW - ODP Leg 184
KW - Quartz
KW - South China Sea
UR - http://www.scopus.com/inward/record.url?scp=34548860905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548860905&partnerID=8YFLogxK
U2 - 10.1016/j.palaeo.2007.07.009
DO - 10.1016/j.palaeo.2007.07.009
M3 - Article
AN - SCOPUS:34548860905
SN - 0031-0182
VL - 254
SP - 561
EP - 582
JO - Palaeogeography, Palaeoclimatology, Palaeoecology
JF - Palaeogeography, Palaeoclimatology, Palaeoecology
IS - 3-4
ER -