TY - JOUR
T1 - Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans
AU - de Boer, Johannes
AU - Chen, Teresa C.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - © 2016 Elsevier Inc. Purpose To evaluate the diagnostic performance of a 3-dimensional (3D) neuroretinal rim parameter, the minimum distance band (MDB), using optical coherence tomography (OCT) high-density volume scans for open-angle glaucoma. Design Reliability analysis. Methods SETTING: Institutional. STUDY POPULATION: Total of 163 patients (105 glaucoma and 58 healthy subjects). OBSERVATION PROCEDURES: One eye of each patient was included. MDB and retinal nerve fiber layer (RNFL) thickness values were determined for 4 quadrants and 4 sectors using a spectral-domain OCT device. MAIN OUTCOME MEASURES: Area under the receiver operating characteristic curve (AUROC) values, sensitivities, specificities, and positive and negative predictive values. Results The best AUROC values of 3D MDB thickness for glaucoma and early glaucoma were for the overall globe (0.969, 0.952), followed by the inferior quadrant (0.966, 0.949) and inferior-temporal sector (0.966, 0.944), and then followed by the superior-temporal sector (0.964, 0.932) and superior quadrant (0.962, 0.924). All 3D MDB thickness AUROC values were higher than those of 2D RNFL thickness. Pairwise comparisons showed that the diagnostic performance of the 3D MDB parameter was significantly better than 2D RNFL thickness only for the nasal quadrant and inferior-nasal and superior-nasal sectors (P = .023–.049). Combining 3D MDB with 2D RNFL parameters provided significantly better diagnostic performance (AUROC 0.984) than most single MDB parameters and all single RNFL parameters. Conclusions Compared with the 2D RNFL thickness parameter, the 3D MDB neuroretinal rim thickness parameter had uniformly equal or better diagnostic performance for glaucoma in all regions and was significantly better in the nasal region.
AB - © 2016 Elsevier Inc. Purpose To evaluate the diagnostic performance of a 3-dimensional (3D) neuroretinal rim parameter, the minimum distance band (MDB), using optical coherence tomography (OCT) high-density volume scans for open-angle glaucoma. Design Reliability analysis. Methods SETTING: Institutional. STUDY POPULATION: Total of 163 patients (105 glaucoma and 58 healthy subjects). OBSERVATION PROCEDURES: One eye of each patient was included. MDB and retinal nerve fiber layer (RNFL) thickness values were determined for 4 quadrants and 4 sectors using a spectral-domain OCT device. MAIN OUTCOME MEASURES: Area under the receiver operating characteristic curve (AUROC) values, sensitivities, specificities, and positive and negative predictive values. Results The best AUROC values of 3D MDB thickness for glaucoma and early glaucoma were for the overall globe (0.969, 0.952), followed by the inferior quadrant (0.966, 0.949) and inferior-temporal sector (0.966, 0.944), and then followed by the superior-temporal sector (0.964, 0.932) and superior quadrant (0.962, 0.924). All 3D MDB thickness AUROC values were higher than those of 2D RNFL thickness. Pairwise comparisons showed that the diagnostic performance of the 3D MDB parameter was significantly better than 2D RNFL thickness only for the nasal quadrant and inferior-nasal and superior-nasal sectors (P = .023–.049). Combining 3D MDB with 2D RNFL parameters provided significantly better diagnostic performance (AUROC 0.984) than most single MDB parameters and all single RNFL parameters. Conclusions Compared with the 2D RNFL thickness parameter, the 3D MDB neuroretinal rim thickness parameter had uniformly equal or better diagnostic performance for glaucoma in all regions and was significantly better in the nasal region.
UR - http://www.scopus.com/inward/record.url?scp=84980034124&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84980034124&partnerID=8YFLogxK
U2 - 10.1016/j.ajo.2016.06.028
DO - 10.1016/j.ajo.2016.06.028
M3 - Article
C2 - 27349414
AN - SCOPUS:84980034124
SN - 0002-9394
VL - 169
SP - 168
EP - 178
JO - American Journal of Ophthalmology
JF - American Journal of Ophthalmology
ER -