TY - JOUR
T1 - Differential steric effects in the inelastic scattering of NO(X) + Ar
T2 - Spin-orbit changing transitions
AU - Brouard, M.
AU - Gordon, S. D.S.
AU - Nichols, B.
AU - Walpole, V.
AU - Aoiz, F. J.
AU - Stolte, S.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Spin-orbit changing transitions for bond-axis oriented collisions of NO(X) with Ar have been investigated with full quantum state selection via a crossed molecular beam experiment at collision energies of 532 cm-1 and 651 cm-1. NO(X) molecules were selected in their ground rotational state (Ω = 0.5, j = 0.5, f) before being adiabatically oriented using a static electric field, such that either the N- or O-end of the molecule was directed towards the incoming Ar atom. After collision, NO(X, Ω′ = 1.5, j′, e) molecules were probed quantum state specifically using velocity-map ion imaging, coupled with resonantly enhanced multi-photon ionization. Differences were observed between the experimental ion images and differential cross sections for collisions occurring at the two ends of the molecule, with results that could largely be accounted for by quantum mechanical scattering calculations. The bond-axis oriented data for the spin-orbit changing collisions are compared with similar results obtained previously for spin-orbit conserving transitions, and for field free scattering of NO(X) with Ar.
AB - Spin-orbit changing transitions for bond-axis oriented collisions of NO(X) with Ar have been investigated with full quantum state selection via a crossed molecular beam experiment at collision energies of 532 cm-1 and 651 cm-1. NO(X) molecules were selected in their ground rotational state (Ω = 0.5, j = 0.5, f) before being adiabatically oriented using a static electric field, such that either the N- or O-end of the molecule was directed towards the incoming Ar atom. After collision, NO(X, Ω′ = 1.5, j′, e) molecules were probed quantum state specifically using velocity-map ion imaging, coupled with resonantly enhanced multi-photon ionization. Differences were observed between the experimental ion images and differential cross sections for collisions occurring at the two ends of the molecule, with results that could largely be accounted for by quantum mechanical scattering calculations. The bond-axis oriented data for the spin-orbit changing collisions are compared with similar results obtained previously for spin-orbit conserving transitions, and for field free scattering of NO(X) with Ar.
UR - http://www.scopus.com/inward/record.url?scp=85068555244&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068555244&partnerID=8YFLogxK
U2 - 10.1039/c8cp06225k
DO - 10.1039/c8cp06225k
M3 - Article
AN - SCOPUS:85068555244
VL - 21
SP - 14173
EP - 14185
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
SN - 1463-9076
IS - 26
ER -