Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs

(The LIGO Scientific Collaboration and the Virgo Collaboration)

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα,Θ<(0.05-25)×10-8 erg cm-2 s-1 Hz-1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at ωα(Θ)<(0.19-2.89)×10-8 sr-1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5-3× over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0<(3.6-4.7)×10-25, 1.5× better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data.

Original languageEnglish
Article number062001
Pages (from-to)1-14
Number of pages14
JournalPhysical Review D
Volume100
Issue number6
DOIs
Publication statusPublished - 4 Sept 2019

Funding

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. [1] 1 N. Christensen , Rep. Prog. Phys. 82 , 016903 ( 2019 ). RPPHAG 0034-4885 10.1088/1361-6633/aae6b5 [2] 2 D. Talukder , E. Thrane , S. Bose , and T. Regimbau , Phys. Rev. D 89 , 123008 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.123008 [3] 3 N. Mazumder , S. Mitra , and S. Dhurandhar , Phys. Rev. D 89 , 084076 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.084076 [4] 4 A. C. Jenkins , M. Sakellariadou , T. Regimbau , and E. Slezak , Phys. Rev. D 98 , 063501 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.063501 [5] 5 A. C. Jenkins , R. O‘Shaughnessy , M. Sakellariadou , and D. Wysocki , Phys. Rev. Lett. 122 , 111101 ( 2019 ). PRLTAO 0031-9007 10.1103/PhysRevLett.122.111101 [6] 6 G. Cusin , I. Dvorkin , C. Pitrou , and J.-P. Uzan , Phys. Rev. Lett. 120 , 231101 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.231101 [7] 7 G. Cusin , C. Pitrou , and J.-P. Uzan , Phys. Rev. D 97 , 123527 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.123527 [8] 8 G. Cusin , C. Pitrou , and J.-P. Uzan , Phys. Rev. D 96 , 103019 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.103019 [9] 9 C. R. Contaldi , Phys. Lett. B 771 , 9 ( 2017 ). PYLBAJ 0370-2693 10.1016/j.physletb.2017.05.020 [10] 10 A. C. Jenkins and M. Sakellariadou , Phys. Rev. D 98 , 063509 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.063509 [11] 11 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 118 , 121102 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121102 [12] 12 J. Abadie ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 107 , 271102 ( 2011 ). PRLTAO 0031-9007 10.1103/PhysRevLett.107.271102 [13] 13 A. I. Renzini and C. R. Contaldi , Mon. Not. R. Astron. Soc. 481 , 4650 ( 2018 ). MNRAA4 0035-8711 10.1093/mnras/sty2546 [14] 14 A. I. Renzini and C. R. Contaldi , Phys. Rev. Lett. 122 , 081102 ( 2019 ). PRLTAO 0031-9007 10.1103/PhysRevLett.122.081102 [15] 15 J. Aasi ( LIGO Scientific Collaboration ) , Classical Quantum Gravity 32 , 074001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001 [16] 16 F. Acernese ( Virgo Collaboration ) , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [17] 17 S. W. Ballmer , Classical Quantum Gravity 23 , S179 ( 2006 ). CQGRDG 0264-9381 10.1088/0264-9381/23/8/S23 [18] 18 B. Abbott ( LIGO Scientific and Virgo Collaboration ) , Phys. Rev. D 76 , 082003 ( 2007 ). PRVDAQ 1550-7998 10.1103/PhysRevD.76.082003 [19] 19 B. P. Abbott ( LIGO Scientific and Virgo Collaboration ) , Phys. Rev. D 100 , 061101 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.100.061101 [20] 20 J. D. Romano and N. J. Cornish , Living Rev. Relativity 20 , 2 ( 2017 ). 1433-8351 10.1007/s41114-017-0004-1 [21] 21 E. Thrane , S. Ballmer , J. D. Romano , S. Mitra , D. Talukder , S. Bose , and V. Mandic , Phys. Rev. D 80 , 122002 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.80.122002 [22] 22 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Astrophys. J. 847 , 47 ( 2017 ). ASJOAB 0004-637X 10.3847/1538-4357/aa86f0 [23] 23 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. D 95 , 122003 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.122003 [24] 24 L. Sun , A. Melatos , P. D. Lasky , C. T. Y. Chung , and N. S. Darman , Phys. Rev. D 94 , 082004 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.082004 [25] 25 C. T. Y. Chung , A. Melatos , B. Krishnan , and J. T. Whelan , Mon. Not. R. Astron Soc. 414 , 2650 ( 2011 ). 10.1111/j.1365-2966.2011.18585.x [26] 26 V. Dergachev , M. A. Papa , B. Steltner , and H.-B. Eggenstein , Phys. Rev. D 99 , 084048 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.084048 [27] 27 J. Aasi ( LIGO Scientific and Virgo Collaboration ) , Phys. Rev. D 88 , 102002 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.102002 [28] 28 J. C. Driggers ( LIGO Scientific Collaboration Instrument Science Authors ) , Phys. Rev. D 99 , 042001 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.042001 [29] 29 D. Davis , T. Massinger , A. Lundgren , J. C. Driggers , A. L. Urban , and L. Nuttall , Classical Quantum Gravity 36 , 055011 ( 2019 ). CQGRDG 0264-9381 10.1088/1361-6382/ab01c5 [30] 30 J. C. Driggers , M. Evans , K. Pepper , and R. Adhikari , Rev. Sci. Instrum. 83 , 024501 ( 2012 ). RSINAK 0034-6748 10.1063/1.3675891 [31] 31 G. D. Meadors , K. Kawabe , and K. Riles , Classical Quantum Gravity 31 , 105014 ( 2014 ). CQGRDG 0264-9381 10.1088/0264-9381/31/10/105014 [32] 32 V. Tiwari , Classical Quantum Gravity 32 , 165014 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/16/165014 [33] 33 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. Lett. 118 , 121101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121101 [34] 34 B. Allen and J. D. Romano , Phys. Rev. D 59 , 102001 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.59.102001 [35] 35 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Classical Quantum Gravity 33 , 134001 ( 2016 ). CQGRDG 0264-9381 10.1088/0264-9381/33/13/134001 [36] 36 C. Biwer , Phys. Rev. D 95 , 062002 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.062002 [37] 37 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , arXiv:1811.12907 . [38] 38 B. P. Abbott ( LIGO Scientific and Virgo Collaborations ) , Nature (London) 460 , 990 ( 2009 ). NATUAS 0028-0836 10.1038/nature08278 [39] 39 P. B. Covas , A. Effler , E. Goetz , P. M. Meyers , A. Neunzert , M. Oliver , B. L. Pearlstone , V. J. Roma , R. M. S. Schofield , V. B. Adya , Phys. Rev. D 97 , 082002 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.082002 [40] 40 B. Abbott ( LIGO Scientific and Virgo Collaborations ) , arXiv:1903.02886 . [41] 41 P. A. R. Ade , N. Aghanim , M. Arnaud , M. Ashdown , J. Aumont , C. Baccigalupi , A. J. Banday , R. B. Barreiro , J. G. Bartlett ( Planck Collaboration ) , Astron. Astrophys. 594 , A13 ( 2016 ). AAEJAF 0004-6361 10.1051/0004-6361/201525830 [42] 42 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.100.062001 includes technical information related to the search that was performed, including more mathematical details. [43] 43 S. Mitra , S. Dhurandhar , T. Souradeep , A. Lazzarini , V. Mandic , S. Bose , and S. Ballmer , Phys. Rev. D 77 , 042002 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.77.042002 [44] 44 G. Cusin , I. Dvorkin , C. Pitrou , and J.-P. Uzan , arXiv:1904.07797 . [45] 45 J. T. Whelan , E. L. Robinson , J. D. Romano , and E. H. Thrane , J. Phys. Conf. Ser. 484 , 012027 ( 2014 ). JPCSDZ 1742-6588 10.1088/1742-6596/484/1/012027 [46] 46 A. C. Jenkins , R. O’Shaughnessy , M. Sakellariadou , and D. Wysocki , arXiv:1810.13435 . [47] 47 B. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. D 97 , 102002 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.102002 [48] 48 A. Jenkins and M. Sakellariadou , arXiv:1902.07719 . [49] 49 L. Wang , D. Steeghs , D. K. Galloway , T. Marsh , and J. Casares , Mon. Not. R. Astron. Soc. 478 , 5174 ( 2018 ). MNRAA4 0035-8711 10.1093/mnras/sty1441 [50] 50 V. Dergachev and M. A. Papa , arXiv:1902.05530 . [51] 51 B. Abbott ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. D 96 , 122004 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.122004 [52] 52 N. Panagia , Chin. J. Astron. Astrophys. Suppl. 8 , 155 ( 2008 ). [53] 53 N. Panagia , R. Gilmozzi , F. Macchetto , H.-M. Adorf , and R. P. Kirshner , Astrophys. J. Lett. 380 , L23 ( 1991 ). AJLEEY 2041-8213 10.1086/186164 [54] 54 L. Bildsten , Astrophys. J. Lett. 501 , L89 ( 1998 ). AJLEEY 2041-8213 10.1086/311440 [55] 55 N. K. Johnson-McDaniel and B. J. Owen , Phys. Rev. D 88 , 044004 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.044004 [56] 56 S. Bonazzola and E. Gourgoulhon , Astron. Astrophys. 312 , 675 ( 1996 ). AAEJAF 0004-6361 [57] 57 B. Haskell , L. Samuelsson , K. Glampedakis , and N. Andersson , Mon. Not. R. Astron. Soc. 385 , 531 ( 2008 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2008.12861.x [58] 58 A. Melatos and D. J. B. Payne , Astrophys. J. 623 , 1044 ( 2005 ). ASJOAB 0004-637X 10.1086/428600 [59] 59 A. Mastrano and A. Melatos , Mon. Not. R. Astron. Soc. 421 , 760 ( 2012 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2011.20350.x [60] 60 A. Ain , P. Dalvi , and S. Mitra , Phys. Rev. D 92 , 022003 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.022003 [61] 61 A. Ain , J. Suresh , and S. Mitra , Phys. Rev. D 98 , 024001 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.024001 [62] 62 E. Thrane , S. Mitra , N. Christensen , V. Mandic , and A. Ain , Phys. Rev. D 91 , 124012 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.124012 [63] 63 B. Goncharov and E. Thrane , Phys. Rev. D 98 , 064018 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.064018

FundersFunder number
Not addedST/N005422/1, ST/N00003X/1, ST/J000019/1, ST/N005406/2, ST/I006269/1, ST/K000845/1, ST/N000633/1, ST/N000072/1, ST/H002006/1, ST/N005430/1
National Science Foundation1707965, 1708081, 1708006, 1921006, 1806824, 1912632, 1707835, 1726215, 1806990, 1912648
Directorate for Mathematical and Physical Sciences
Kavli Foundation
Canadian Institute for Advanced Research
Natural Sciences and Engineering Research Council of Canada
Ontario Ministry of Economic Development and Innovation
Science and Technology Facilities CouncilST/J00166X/1
Leverhulme Trust
Royal Society
Scottish Funding Council
Scottish Universities Physics Alliance
European Commission
Australian Research Council
Department of Science and Technology, Ministry of Science and Technology, India
Council of Scientific and Industrial Research, India
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
National Natural Science Foundation of China
Science and Engineering Research Board
Russian Foundation for Basic Research
Research Grants Council, University Grants Committee
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Generalitat Valenciana
Hungarian Scientific Research Fund
National Research Foundation of Korea
Instituto Nazionale di Fisica Nucleare
Narodowe Centrum Nauki
Ministry of Human Resource Development
Ministry of Science and Technology, Taiwan
Centre National de la Recherche Scientifique
Russian Science Foundation
European Regional Development Fund
Universitat de les Illes Balears
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Agencia Estatal de Investigación
Ministério da Ciência, Tecnologia, Inovações e Comunicações
Istituto Nazionale di Fisica Nucleare
ICTP South American Institute for Fundamental Research

    Fingerprint

    Dive into the research topics of 'Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs'. Together they form a unique fingerprint.

    Cite this