Abstract
Coarse woody debris is a key terrestrial carbon pool, and its turnover through fire plays a fundamental role in global carbon cycling. Coarse dead wood fuel properties, which vary between tree species and wood decay stages, might affect its combustion, consumption and carbon gas emissions during fire, either directly or indirectly through interacting with moisture or ground-wood contact. Using controlled laboratory burns, we tried to disentangle the effects of multiple biotic and abiotic factors: tree species (one conifer and three hard wood species), wood decay stages, moisture content, and ground-wood contact on coarse wood combustion, consumption, and CO2 and CO emissions during fire. Wood density was measured for all samples. We found that, compared to the other tested factors, wood decay stages acted as a predominant positive driver increasing coarse wood flammability and associated CO2 and CO emissions during fire. Wood moisture content (30 versus 7%) moderately inhibited wood flammability with slight interaction with wood decay effects. Wood decay effects can be mainly attributed to the decreasing wood density as wood becomes more decomposed. Our experimental data provides useful information for how several wood properties, especially moisture content and wood decay stages, with wood density as the key underlying trait, together drive coarse wood carbon turnover through fire to the atmosphere. Our results will help to improve the predictive power of global vegetation climate models on dead wood turnover and its feedback to climate.
Original language | English |
---|---|
Pages (from-to) | 275-288 |
Number of pages | 14 |
Journal | Forest Ecology and Management |
Volume | 427 |
Early online date | 15 Jun 2018 |
DOIs | |
Publication status | Published - 1 Nov 2018 |
Funding
This work was supported by the Chinese Scholarship Council [grant 201204910213 ]; the Netherlands Organization for Scientific Research (NWO) [grant 047.018.003 ]; the Royal Netherlands Academy of Arts and Sciences (KNAW) [grant CEP-12CDP007 ]. Appendix See Figs. A1–A5 . See . Tables A1 and A2
Funders | Funder number |
---|---|
Koninklijke Nederlandse Akademie van Wetenschappen | CEP-12CDP007 |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | 047.018.003 |
China Scholarship Council | 201204910213 |
Keywords
- Carbon cycling
- Greenhouse gas
- Plant species
- Wood combustion
- Wood decomposition
- Wood density