Abstract
In nature, plants experience large fluctuations in light intensity and they need to balance the absorption and utilization of this energy appropriately. Non-photochemical quenching (NPQ) is a rapidly switchable mechanism that protects plants from photodamage caused by high light exposure by dissipating the excess absorbed energy as heat. It is triggered by the pH gradient across the thylakoid membrane and requires the protein PsbS and the xanthophyll zeaxanthin. However, the site and mechanism of the quencher(s) remain unknown. Here, we constructed a mutant of Arabidopsis thaliana that lacks light-harvesting complex II (LHCII), the main antenna complex of plants, to verify its contribution to NPQ. The mutant plant has normally stacked thylakoid membranes, displays no upregulation of other LHCs but shows a relative decrease in Photosystem I (PSI), which compensates for the decrease of the PSII antenna. The mutant plant exhibits a reduction in NPQ of about 60% and the remaining NPQ resembles that of mutant plants lacking chlorophyll (Chl) b, which lack all PSII peripheral antenna complexes. We thus report that PsbS-dependent NPQ occurs mainly in LHCII, but there is an additional quenching site in the PSII core.
Original language | English |
---|---|
Pages (from-to) | 1177-1183 |
Number of pages | 7 |
Journal | Nature Plants |
Volume | 5 |
Issue number | 11 |
Early online date | 28 Oct 2019 |
DOIs | |
Publication status | Published - Nov 2019 |
Funding
We thank L. Roy for constructing the knockdown line, S. Jansson for the gift of the amiLhcb1 and amiLhcb2 seeds, A. Rubert Albiol for help in selecting the knockdown line and H. van Amerongen for helpful discussion. Electron microscopy was performed at the Vrije Universiteit Electron Microscopy Facility. R.C. received financial support from the Netherlands Organization for Scientific Research (NWO) (86510013) and the European Commission (EC) (214113). W.J.N. was supported by a European Commission Marie Curie Actions Individual Fellowship (799083). L.N. received financial support from the New Zealand Government through the Royal Society of New Zealand– Rutherford Foundation.
Funders | Funder number |
---|---|
European Commission Marie Curie Actions | |
Netherlands Organization for Scientific Research | |
New Zealand Government | |
Royal Society of New Zealand– Rutherford Foundation | |
Horizon 2020 Framework Programme | 799083 |
European Commission | 214113 |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | 86510013 |