Dominance of Geobacteraceae in BTX-grading enrichments from an iron-reducing aquifer.

S Botton, M. van Harmelen, M. Braster, J. Parsons, W.F.M. Roling

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Microbial community structure was linked to degradation potential in benzene-, toluene- or xylene- (BTX) degrading, iron-reducing enrichments derived from an iron-reducing aquifer polluted with landfill leachate. Enrichments were characterized using 16S rRNA gene-based analysis, targeting of the benzylsuccinate synthase-encoding bssA gene and phospholipid fatty acid (PLFA) profiling in combination with tracking of labelled substrate. 16S rRNA gene analysis indicated the dominance of Geobacteraceae, and one phylotype in particular, in all enrichments inoculated with polluted aquifer material. Upon cultivation, progressively higher degradation rates with a concomitant decrease in species richness occurred in all primary incubations and successive enrichments. Yet, the same Geobacteraceae phylotype remained common and dominant, indicating its involvement in BTX degradation. However, the bssA gene sequences in BTX degrading enrichments differed considerably from those of Geobacter isolates, suggesting that the first steps of toluene, but also benzene and xylene oxidation, are carried out by another member of the enrichments. Therefore, BTX would be synthrophically degraded by a bacterial consortium in which Geobacteraceae utilized intermediate metabolites. PLFA analysis in combination with
Original languageEnglish
Pages (from-to)118-130
Number of pages13
JournalFEMS Microbiology Ecology
Volume62
DOIs
Publication statusPublished - 2007

Fingerprint Dive into the research topics of 'Dominance of Geobacteraceae in BTX-grading enrichments from an iron-reducing aquifer.'. Together they form a unique fingerprint.

Cite this