EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents

Marjolein M L J Z Vandenbosch, Dennis van 't Ent, Dorret I Boomsma, Andrey P Anokhin, Dirk J A Smit

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

The human brain shows remarkable development of functional brain activity from childhood to adolescence. Here, we investigated whether electroencephalogram (EEG) recordings are suitable for predicting the age of children and adolescents. Moreover, we investigated whether overestimation or underestimation of age was stable over longer time periods, as stable prediction error can be interpreted as reflecting individual brain maturational level. Finally, we established whether the age-prediction error was genetically determined. Then, 3 min eyes-closed resting-state EEG data from the longitudinal EEG studies of Netherlands Twin Register (NTR; n = 836) and Washington University in St. Louis (n = 702) were used at ages 5, 7, 12, 14, 16, and 18. Longitudinal data were available within childhood (5-7 years) and adolescence (16-18 years). We calculated power in 1 Hz wide bins (1-24 Hz). Random forest (RF) regression and relevance vector machine with sixfold cross-validation were applied. The best mean absolute prediction error was obtained with RF (1.22 years). Classification of childhood versus puberty/adolescence reached over 94% accuracy. Prediction errors were moderately to highly stable over periods of 1.5-2.1 years (0.53 < r < 0.74) and signifcantly affected by genetic factors (heritability between 42 and 79%). Our results show that age prediction from low-cost EEG recordings is comparable in accuracy to those obtained with magnetic resonance imaging. Children and adolescents showed stable overestimation or underestimation of their age, which means that some participants have stable brain activity patterns that reflect those of an older or younger age, and could therefore reflect individual brain maturational level. This prediction error is heritable, suggesting that genes underlie maturational level of functional brain activity. We propose that age prediction based on EEG recordings can be used for tracking neurodevelopment in typically developing children, in preterm children, and in children with neurodevelopmental disorders.

LanguageEnglish
JournalHuman Brain Mapping
DOIs
StateE-pub ahead of print - 4 Jan 2019

Fingerprint

Electroencephalography
Brain
Puberty
Netherlands
Longitudinal Studies
Magnetic Resonance Imaging
Costs and Cost Analysis
Genes
Forests

Cite this

@article{efa98aa7dad14f139ae471571f3ed455,
title = "EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents",
abstract = "The human brain shows remarkable development of functional brain activity from childhood to adolescence. Here, we investigated whether electroencephalogram (EEG) recordings are suitable for predicting the age of children and adolescents. Moreover, we investigated whether overestimation or underestimation of age was stable over longer time periods, as stable prediction error can be interpreted as reflecting individual brain maturational level. Finally, we established whether the age-prediction error was genetically determined. Then, 3 min eyes-closed resting-state EEG data from the longitudinal EEG studies of Netherlands Twin Register (NTR; n = 836) and Washington University in St. Louis (n = 702) were used at ages 5, 7, 12, 14, 16, and 18. Longitudinal data were available within childhood (5-7 years) and adolescence (16-18 years). We calculated power in 1 Hz wide bins (1-24 Hz). Random forest (RF) regression and relevance vector machine with sixfold cross-validation were applied. The best mean absolute prediction error was obtained with RF (1.22 years). Classification of childhood versus puberty/adolescence reached over 94{\%} accuracy. Prediction errors were moderately to highly stable over periods of 1.5-2.1 years (0.53 < r < 0.74) and signifcantly affected by genetic factors (heritability between 42 and 79{\%}). Our results show that age prediction from low-cost EEG recordings is comparable in accuracy to those obtained with magnetic resonance imaging. Children and adolescents showed stable overestimation or underestimation of their age, which means that some participants have stable brain activity patterns that reflect those of an older or younger age, and could therefore reflect individual brain maturational level. This prediction error is heritable, suggesting that genes underlie maturational level of functional brain activity. We propose that age prediction based on EEG recordings can be used for tracking neurodevelopment in typically developing children, in preterm children, and in children with neurodevelopmental disorders.",
author = "Vandenbosch, {Marjolein M L J Z} and Ent, {Dennis van 't} and Boomsma, {Dorret I} and Anokhin, {Andrey P} and Smit, {Dirk J A}",
note = "{\circledC} 2019 Wiley Periodicals, Inc.",
year = "2019",
month = "1",
day = "4",
doi = "10.1002/hbm.24501",
language = "English",
journal = "Human Brain Mapping",
issn = "1065-9471",
publisher = "Wiley-Liss Inc.",

}

EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents. / Vandenbosch, Marjolein M L J Z; Ent, Dennis van 't; Boomsma, Dorret I; Anokhin, Andrey P; Smit, Dirk J A.

In: Human Brain Mapping, 04.01.2019.

Research output: Contribution to JournalArticleAcademicpeer-review

TY - JOUR

T1 - EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents

AU - Vandenbosch,Marjolein M L J Z

AU - Ent,Dennis van 't

AU - Boomsma,Dorret I

AU - Anokhin,Andrey P

AU - Smit,Dirk J A

N1 - © 2019 Wiley Periodicals, Inc.

PY - 2019/1/4

Y1 - 2019/1/4

N2 - The human brain shows remarkable development of functional brain activity from childhood to adolescence. Here, we investigated whether electroencephalogram (EEG) recordings are suitable for predicting the age of children and adolescents. Moreover, we investigated whether overestimation or underestimation of age was stable over longer time periods, as stable prediction error can be interpreted as reflecting individual brain maturational level. Finally, we established whether the age-prediction error was genetically determined. Then, 3 min eyes-closed resting-state EEG data from the longitudinal EEG studies of Netherlands Twin Register (NTR; n = 836) and Washington University in St. Louis (n = 702) were used at ages 5, 7, 12, 14, 16, and 18. Longitudinal data were available within childhood (5-7 years) and adolescence (16-18 years). We calculated power in 1 Hz wide bins (1-24 Hz). Random forest (RF) regression and relevance vector machine with sixfold cross-validation were applied. The best mean absolute prediction error was obtained with RF (1.22 years). Classification of childhood versus puberty/adolescence reached over 94% accuracy. Prediction errors were moderately to highly stable over periods of 1.5-2.1 years (0.53 < r < 0.74) and signifcantly affected by genetic factors (heritability between 42 and 79%). Our results show that age prediction from low-cost EEG recordings is comparable in accuracy to those obtained with magnetic resonance imaging. Children and adolescents showed stable overestimation or underestimation of their age, which means that some participants have stable brain activity patterns that reflect those of an older or younger age, and could therefore reflect individual brain maturational level. This prediction error is heritable, suggesting that genes underlie maturational level of functional brain activity. We propose that age prediction based on EEG recordings can be used for tracking neurodevelopment in typically developing children, in preterm children, and in children with neurodevelopmental disorders.

AB - The human brain shows remarkable development of functional brain activity from childhood to adolescence. Here, we investigated whether electroencephalogram (EEG) recordings are suitable for predicting the age of children and adolescents. Moreover, we investigated whether overestimation or underestimation of age was stable over longer time periods, as stable prediction error can be interpreted as reflecting individual brain maturational level. Finally, we established whether the age-prediction error was genetically determined. Then, 3 min eyes-closed resting-state EEG data from the longitudinal EEG studies of Netherlands Twin Register (NTR; n = 836) and Washington University in St. Louis (n = 702) were used at ages 5, 7, 12, 14, 16, and 18. Longitudinal data were available within childhood (5-7 years) and adolescence (16-18 years). We calculated power in 1 Hz wide bins (1-24 Hz). Random forest (RF) regression and relevance vector machine with sixfold cross-validation were applied. The best mean absolute prediction error was obtained with RF (1.22 years). Classification of childhood versus puberty/adolescence reached over 94% accuracy. Prediction errors were moderately to highly stable over periods of 1.5-2.1 years (0.53 < r < 0.74) and signifcantly affected by genetic factors (heritability between 42 and 79%). Our results show that age prediction from low-cost EEG recordings is comparable in accuracy to those obtained with magnetic resonance imaging. Children and adolescents showed stable overestimation or underestimation of their age, which means that some participants have stable brain activity patterns that reflect those of an older or younger age, and could therefore reflect individual brain maturational level. This prediction error is heritable, suggesting that genes underlie maturational level of functional brain activity. We propose that age prediction based on EEG recordings can be used for tracking neurodevelopment in typically developing children, in preterm children, and in children with neurodevelopmental disorders.

U2 - 10.1002/hbm.24501

DO - 10.1002/hbm.24501

M3 - Article

JO - Human Brain Mapping

T2 - Human Brain Mapping

JF - Human Brain Mapping

SN - 1065-9471

ER -