TY - JOUR
T1 - Effect of low-temperature aging on the mechanical behavior of ground Y-TZP
AU - Pereira, G.K.R.
AU - Amaral, M.
AU - Cesar, P.F.
AU - Bottino, M.C.
AU - Kleverlaan, C.J.
AU - Valandro, L.F.
PY - 2015
Y1 - 2015
N2 - This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding (as-sintered, Ctrl), grinding with an extra-fine diamond bur (25 µm Xfine) and coarse diamond bur (181 µm Coarse); and "low-temperature-aging" (absence or presence). Grinding was performed using a contra-angle handpiece under water-cooling. Aging was performed in an autoclave at 134 °C, under 2 bar, over a period of 20 h. Surface topography analysis showed an increase in roughness based on grit-size (Coarse>Xfine>Ctrl), and aging promoted different effects on roughness (Ctrl AgCoarse). Grinding and aging promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl); however, distinct effects were observed for aging (CtrlCoarse Ag). Weibull moduli were statistically similar. Grinding promoted an increase in characteristic strength as a result of an increase in m-phase content; when the Y-TZP surface was ground by coarse diamond burs followed by aging, characteristic strength was reduced, meaning the low-temperature degradation appeared to intensify for rougher Y-TZP surfaces.
AB - This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding (as-sintered, Ctrl), grinding with an extra-fine diamond bur (25 µm Xfine) and coarse diamond bur (181 µm Coarse); and "low-temperature-aging" (absence or presence). Grinding was performed using a contra-angle handpiece under water-cooling. Aging was performed in an autoclave at 134 °C, under 2 bar, over a period of 20 h. Surface topography analysis showed an increase in roughness based on grit-size (Coarse>Xfine>Ctrl), and aging promoted different effects on roughness (Ctrl AgCoarse). Grinding and aging promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl); however, distinct effects were observed for aging (CtrlCoarse Ag). Weibull moduli were statistically similar. Grinding promoted an increase in characteristic strength as a result of an increase in m-phase content; when the Y-TZP surface was ground by coarse diamond burs followed by aging, characteristic strength was reduced, meaning the low-temperature degradation appeared to intensify for rougher Y-TZP surfaces.
UR - https://www.scopus.com/pages/publications/84923931515
UR - https://www.scopus.com/inward/citedby.url?scp=84923931515&partnerID=8YFLogxK
U2 - 10.1016/j.jmbbm.2014.12.009
DO - 10.1016/j.jmbbm.2014.12.009
M3 - Article
SN - 1751-6161
VL - 45
SP - 183
EP - 192
JO - Journal of the Mechanical Behavior of Biomedical Materials
JF - Journal of the Mechanical Behavior of Biomedical Materials
ER -