Abstract
We model power grids transporting electricity generated by intermittent renewable sources as complex networks, where line failures can emerge indirectly by noisy power input at the nodes. By combining concepts from statistical physics and the physics of power flows and taking weather correlations into account, we rank line failures according to their likelihood and establish the most likely way such failures occur and propagate. Our insights are mathematically rigorous in a small-noise limit and are validated with data from the German transmission grid.
Original language | English |
---|---|
Article number | 258301 |
Journal | Physical Review Letters |
Volume | 120 |
Issue number | 25 |
DOIs | |
Publication status | Published - 21 Jun 2018 |
Externally published | Yes |
Funding
We thank the referees for many useful comments, in particular, for suggesting SciGRID. NWO Vici 639.033.413 and NWO Rubicon 680.50.1529 grants provided financial support. A. Z. acknowledges the support of Resnick Sustainability Institute at Caltech.
Funders | Funder number |
---|---|
Resnick Sustainability Institute for Science, Energy and Sustainability, California Institute of Technology | |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek |