Abstract
Aims/hypothesis: Empagliflozin (EMPA), an inhibitor of the renal sodium–glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. Elevated cardiac cytoplasmic Na+ ([Na+]c) and Ca2+ ([Ca2+]c) concentrations and decreased mitochondrial Ca2+ concentration ([Ca2+]m) are drivers of heart failure and cardiac death. We therefore hypothesised that EMPA would directly modify [Na+]c, [Ca2+]c and [Ca2+]m in cardiomyocytes. Methods: [Na+]c, [Ca2+]c, [Ca 2+]m and Na+/H+ exchanger (NHE) activity were measured fluorometrically in isolated ventricular myocytes from rabbits and rats. Results: An increase in extracellular glucose, from 5.5 mmol/l to 11 mmol/l, resulted in increased [Na+]c and [Ca2+]c levels. EMPA treatment directly inhibited NHE flux, caused a reduction in [Na+]c and [Ca2+]c and increased [Ca2+]m. After pretreatment with the NHE inhibitor, Cariporide, these effects of EMPA were strongly reduced. EMPA also affected [Na+]c and NHE flux in the absence of extracellular glucose. Conclusions/interpretation: The glucose lowering kidney-targeted agent, EMPA, demonstrates direct cardiac effects by lowering myocardial [Na+]c and [Ca2+]c and enhancing [Ca2+]m, through impairment of myocardial NHE flux, independent of SGLT2 activity.
Original language | English |
---|---|
Pages (from-to) | 568-573 |
Number of pages | 6 |
Journal | Diabetologia |
Volume | 60 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2017 |
Funding
This work was supported, in part, by the Netherlands CardioVascular Research Initiative (CVON2011-11 ARENA).
Funders | Funder number |
---|---|
Netherlands CardioVascular Research Initiative | CVON2011-11 ARENA |
Keywords
- Calcium
- Cardiac death
- Diabetes
- Glucose
- Heart failure
- Sodium