Abstract
We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic techniques makes possible a modelling of the excitation dynamics at a quantitative level. The modified Redfield theory allows a precise assignment of the energy transfer pathways together with a direct visualization of the whole excitation dynamics where various regimes from a coherent motion of delocalized exciton to a hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motion (as we demonstrate for LH2). Excitation dynamics under quenched conditions in higher-plant complexes is discussed. © the Owner Societies 2006.
Original language | English |
---|---|
Pages (from-to) | 793-807 |
Journal | Physical Chemistry Chemical Physics - PCCP |
Volume | 8 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2006 |