Abstract
In this paper we review an approach to estimating the causal effect of a time-varying treatment on time to some event of interest. This approach is designed for a situation where the treatment may have been repeatedly adapted to patient characteristics, which themselves may also be time-dependent. In this situation the effect of the treatment cannot simply be estimated by conditioning on the patient characteristics, as these may themselves be indicators of the treatment effect. This so-called time-dependent confounding is typical in observational studies. We discuss a new class of failure time models, structural nested failure time models, which can be used to estimate the causal effect of a time-varying treatment, and present methods for estimating and testing the parameters of these models.
Original language | English |
---|---|
Pages (from-to) | 271-295 |
Journal | Statistica Neerlandica. Journal of the Netherlands Society for Statistics and Operations Research |
Volume | 58 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2004 |