Estimation of Alveolar Bone Loss in Periodontitis Using Machine Learning

Nektarios Tsoromokos*, Sarah Parinussa, Frank Claessen, David Anssari Moin, Bruno G. Loos

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Aim: The objective of this research was to perform a pilot study to develop an automatic analysis of periapical radiographs from patients with and without periodontitis for the percentage alveolar bone loss (ABL) on the approximal surfaces of teeth using a supervised machine learning model, that is, convolutional neural networks (CNN). Material and methods: A total of 1546 approximal sites from 54 participants on mandibular periapical radiographs were manually annotated (MA) for a training set (n = 1308 sites), a validation set (n = 98 sites), and a test set (n = 140 sites). The training and validation sets were used for the development of a CNN algorithm. The algorithm recognised the cemento-enamel junction, the most apical extent of the alveolar crest, the apex, and the surrounding alveolar bone. Results: For the total of 140 images in the test set, the CNN scored a mean of 23.1 ± 11.8 %ABL, whilst the corresponding value for MA was 27.8 ± 13.8 %ABL. The intraclass correlation (ICC) was 0.601 (P < .001), indicating moderate reliability. Further subanalyses for various tooth types and various bone loss patterns showed that ICCs remained significant, although the algorithm performed with excellent reliability for %ABL on nonmolar teeth (incisors, canines, premolars; ICC = 0.763). Conclusions: A CNN trained algorithm on radiographic images showed a diagnostic performance with moderate to good reliability to detect and quantify %ABL in periapical radiographs.

Original languageEnglish
Pages (from-to)621-627
Number of pages7
JournalInternational Dental Journal
Volume72
Issue number5
Early online date13 May 2022
DOIs
Publication statusPublished - Oct 2022

Bibliographical note

Funding Information:
Acknowledgements This work wits supported by the National Natural Science Foundation of China (Grant No. 49872031) and the Excellent Young Teuchcr Grunt of the Ministry of Education.

Publisher Copyright:
© 2022

Funding

Acknowledgements This work wits supported by the National Natural Science Foundation of China (Grant No. 49872031) and the Excellent Young Teuchcr Grunt of the Ministry of Education.

Keywords

  • Alveolar bone loss
  • Convolutional neural network
  • Machine learning
  • Periapical radiographs
  • Periodontitis

Fingerprint

Dive into the research topics of 'Estimation of Alveolar Bone Loss in Periodontitis Using Machine Learning'. Together they form a unique fingerprint.

Cite this