Abstract
Aim: The objective of this research was to perform a pilot study to develop an automatic analysis of periapical radiographs from patients with and without periodontitis for the percentage alveolar bone loss (ABL) on the approximal surfaces of teeth using a supervised machine learning model, that is, convolutional neural networks (CNN). Material and methods: A total of 1546 approximal sites from 54 participants on mandibular periapical radiographs were manually annotated (MA) for a training set (n = 1308 sites), a validation set (n = 98 sites), and a test set (n = 140 sites). The training and validation sets were used for the development of a CNN algorithm. The algorithm recognised the cemento-enamel junction, the most apical extent of the alveolar crest, the apex, and the surrounding alveolar bone. Results: For the total of 140 images in the test set, the CNN scored a mean of 23.1 ± 11.8 %ABL, whilst the corresponding value for MA was 27.8 ± 13.8 %ABL. The intraclass correlation (ICC) was 0.601 (P < .001), indicating moderate reliability. Further subanalyses for various tooth types and various bone loss patterns showed that ICCs remained significant, although the algorithm performed with excellent reliability for %ABL on nonmolar teeth (incisors, canines, premolars; ICC = 0.763). Conclusions: A CNN trained algorithm on radiographic images showed a diagnostic performance with moderate to good reliability to detect and quantify %ABL in periapical radiographs.
Original language | English |
---|---|
Pages (from-to) | 621-627 |
Number of pages | 7 |
Journal | International Dental Journal |
Volume | 72 |
Issue number | 5 |
Early online date | 13 May 2022 |
DOIs | |
Publication status | Published - Oct 2022 |
Bibliographical note
Funding Information:Acknowledgements This work wits supported by the National Natural Science Foundation of China (Grant No. 49872031) and the Excellent Young Teuchcr Grunt of the Ministry of Education.
Publisher Copyright:
© 2022
Funding
Acknowledgements This work wits supported by the National Natural Science Foundation of China (Grant No. 49872031) and the Excellent Young Teuchcr Grunt of the Ministry of Education.
Keywords
- Alveolar bone loss
- Convolutional neural network
- Machine learning
- Periapical radiographs
- Periodontitis