Estimation of global tropical cyclone wind speed probabilities using the STORM dataset

Nadia Bloemendaal*, Hans de Moel, Sanne Muis, Ivan D. Haigh, Jeroen C.J.H. Aerts

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review


Tropical cyclones (TC) are one of the deadliest and costliest natural disasters. To mitigate the impact of such disasters, it is essential to know extreme exceedance probabilities, also known as return periods, of TC hazards. In this paper, we demonstrate the use of the STORM dataset, containing synthetic TCs equivalent of 10,000 years under present-day climate conditions, for the calculation of TC wind speed return periods. The temporal length of the STORM dataset allows us to empirically calculate return periods up to 10,000 years without fitting an extreme value distribution. We show that fitting a distribution typically results in higher wind speeds compared to their empirically derived counterparts, especially for return periods exceeding 100-yr. By applying a parametric wind model to the TC tracks, we derive return periods at 10 km resolution in TC-prone regions. The return periods are validated against observations and previous studies, and show a good agreement. The accompanying global-scale wind speed return period dataset is publicly available and can be used for high-resolution TC risk assessments.

Original languageEnglish
Article number377
Pages (from-to)1-11
Number of pages11
JournalScientific Data
Early online date10 Nov 2020
Publication statusPublished - 10 Nov 2020


Dive into the research topics of 'Estimation of global tropical cyclone wind speed probabilities using the STORM dataset'. Together they form a unique fingerprint.

Cite this