Experimental test of higher-order Laguerre-Gauss modes in the 10 m Glasgow prototype interferometer

B. Sorazu*, P. J. Fulda, B. W. Barr, A. S. Bell, C. Bond, L. Carbone, A. Freise, S. Hild, S. H. Huttner, J. MacArthur, K. A. Strain

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Brownian noise of dielectric mirror coatings is expected to be one of the limiting noise sources, at the peak sensitivity, of next generation ground based interferometric gravitational wave (GW) detectors. The use of higher-order Laguerre-Gauss (LG) beams has been suggested to reduce the effect of coating thermal noise in future generations of gravitational wave detectors. In this paper we describe the first test of interferometry with higher-order LG beams in an environment similar to a full-scale gravitational wave detector. We compare the interferometric performance of higher-order LG modes and the fundamental mode beams, injected into a 10 m long suspended cavity that features a finesse of 612, a value chosen to be typical of future gravitational wave detectors. We found that the expected mode degeneracy of the injected LG3, 3 beam was resolved into a multiple peak structure, and that the cavity length control signal featured several nearby zero crossings. The break up of the mode degeneracy is due to an astigmatism (defined as |Rcy - R cx|) of 5.25 ± 0.5 cm on one of our cavity mirrors with a radius of curvature (Rc) of 15 m. This observation agrees well with numerical simulations developed with the FINESSE software. We also report on how these higher-order mode beams respond to the misalignment and mode mismatch present in our 10 m cavity. In general we found the LG3, 3 beam to be considerably more susceptible to astigmatism and mode mismatch than a conventional fundamental mode beam. Therefore the potential application of higher-order Laguerre-Gauss beams in future gravitational wave detectors will impose much more stringent requirements on both mode matching and mirror astigmatism.

Original languageEnglish
Article number035004
JournalClassical and Quantum Gravity
Volume30
Issue number3
DOIs
Publication statusPublished - 7 Feb 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Experimental test of higher-order Laguerre-Gauss modes in the 10 m Glasgow prototype interferometer'. Together they form a unique fingerprint.

Cite this