Facile synthesis of 1T-MOS2 nanoflowers using hydrothermal method

A.R. Fareza, F.A.A. Nugroho, V. Fauzia

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Abstract

Molybdenum disulfide (MoS2) is one of the promising 2D materials thanks to its outstanding physicochemical properties and therefore is predicted to play a key role in optoelectronics devices and energy applications. MoS2 exhibits three phases with distinctive crystal structure depending on its stacking order: 1T (metallic), 2H (semiconducting), and 3R (semiconducting). Among all of them, 1T-MoS2 has become the center of interest due to its e.g., high catalytic activity. However, most of the methods to obtain 1T-MoS2 are complex and costly, for example strain engineering, electron beam treatment, and plasmonic hot electron injection. As response, we here demonstrate a facile and cost-efficient hydrothermal route at 200oC to synthesize MoS2 with high content of 1T phase. MoS2-200oC nanoflowers has an average diameter of 2.96 µm with the S/Mo atomic ratio of 1.50 and the band gap of 1.39 eV. It has an additional diffraction peak at 2θ = 9.22o, indicating the transformation of semiconducting 2H into metallic 1T. Higher concentration of 1T phase in MoS2-200oC is also indicated by high intensity of the E1g Raman peak.
Original languageEnglish
Title of host publicationFunctional Materials
Subtitle of host publicationFundamental Research and Industrial Application
Editors Risdiana, Budhy Kurniawan, Darminto, A.A. Nugroho
PublisherTrans Tech Publications Ltd
Pages173-178
Number of pages6
ISBN (Electronic)9783035738698
ISBN (Print)9783035718690
DOIs
Publication statusPublished - 2021
Event5th International Conference on Functional Materials Science, ICFMS 2020 - Virtual, Online
Duration: 11 Nov 202012 Nov 2020

Publication series

NameMaterials Science Forum
PublisherScientific.Net
Volume1028
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Conference

Conference5th International Conference on Functional Materials Science, ICFMS 2020
CityVirtual, Online
Period11/11/2012/11/20

Bibliographical note

Publishers copyright:
© 2021 Trans Tech Publications Ltd, Switzerland

Fingerprint

Dive into the research topics of 'Facile synthesis of 1T-MOS2 nanoflowers using hydrothermal method'. Together they form a unique fingerprint.

Cite this