TY - GEN
T1 - Failure Localization in Power Systems via Tree Partitions
AU - Guo, Linqi
AU - Liang, Chen
AU - Zocca, Alessandro
AU - Low, Steven H.
AU - Wierman, Adam
PY - 2019/1/18
Y1 - 2019/1/18
N2 - Cascading failures in power systems propagate non-locally, making the control and mitigation of outages extremely hard. In this work, we use the emerging concept of the tree partition of transmission networks to provide an analytical characterization of line failure localizability in transmission systems. Our results rigorously establish the well perceived intuition in power community that failures cannot cross bridges, and reveal a finer-grained concept that encodes more precise information on failure propagations within tree-partition regions. Specifically, when a non-bridge line is tripped, the impact of this failure only propagates within well-defined components, which we refer to as cells, of the tree partition defined by the bridges. In contrast, when a bridge line is tripped, the impact of this failure propagates globally across the network, affecting the power flow on all remaining transmission lines. This characterization suggests that it is possible to improve the system robustness by temporarily switching off certain transmission lines, so as to create more, smaller components in the tree partition; thus spatially localizing line failures and making the grid less vulnerable to large-scale outages. We illustrate this approach using the IEEE 118-bus test system and demonstrate that switching off a negligible portion of transmission lines allows the impact of line failures to be significantly more localized without substantial changes in line congestion.
AB - Cascading failures in power systems propagate non-locally, making the control and mitigation of outages extremely hard. In this work, we use the emerging concept of the tree partition of transmission networks to provide an analytical characterization of line failure localizability in transmission systems. Our results rigorously establish the well perceived intuition in power community that failures cannot cross bridges, and reveal a finer-grained concept that encodes more precise information on failure propagations within tree-partition regions. Specifically, when a non-bridge line is tripped, the impact of this failure only propagates within well-defined components, which we refer to as cells, of the tree partition defined by the bridges. In contrast, when a bridge line is tripped, the impact of this failure propagates globally across the network, affecting the power flow on all remaining transmission lines. This characterization suggests that it is possible to improve the system robustness by temporarily switching off certain transmission lines, so as to create more, smaller components in the tree partition; thus spatially localizing line failures and making the grid less vulnerable to large-scale outages. We illustrate this approach using the IEEE 118-bus test system and demonstrate that switching off a negligible portion of transmission lines allows the impact of line failures to be significantly more localized without substantial changes in line congestion.
UR - http://www.scopus.com/inward/record.url?scp=85062194018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062194018&partnerID=8YFLogxK
U2 - 10.1109/CDC.2018.8619562
DO - 10.1109/CDC.2018.8619562
M3 - Conference contribution
AN - SCOPUS:85062194018
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 6832
EP - 6839
BT - 2018 IEEE Conference on Decision and Control, CDC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 57th IEEE Conference on Decision and Control, CDC 2018
Y2 - 17 December 2018 through 19 December 2018
ER -