## Abstract

We provide a deterministic construction of the sparse JohnsonLindenstrauss transform of Kane & Nelson (J.ACM 2014) which runs, under a mild restriction, in the time necessary to apply the sparse embedding matrix to the input vectors. Specifically, given a set of n vectors in Rd and target error ϵ, we give a deterministic algorithm to compute a f1; 0; 1g embedding matrix of rank O((ln n)= ϵ 2) with O((ln n)/ϵ) entries per column which preserves the norms of the vectors to within 1ϵ. If NNZ, the number of non-zero entries in the input set of vectors, is (d2), our algorithm runs in time O(NNZ ln n/ϵ). One ingredient in our construction is an extremely simple proof of the Hanson-Wright inequality for subgaussian random variables, which is more amenable to derandomization. As an interesting byproduct, we are able to derive the essentially optimal form of the inequality in terms of its functional dependence on the parameters.

Original language | English |
---|---|

Title of host publication | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 |

Publisher | Association for Computing Machinery |

Pages | 1330-1344 |

Number of pages | 15 |

ISBN (Electronic) | 9781611975031 |

DOIs | |

Publication status | Published - 2018 |

Event | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 - New Orleans, United States Duration: 7 Jan 2018 → 10 Jan 2018 |

### Conference

Conference | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 |
---|---|

Country/Territory | United States |

City | New Orleans |

Period | 7/01/18 → 10/01/18 |