Abstract
Objective The objective is to present a proof-of-concept of a semi-automatic method to reduce hippocampus segmentation time on magnetic resonance images (MRI). Materials and methods FAst Segmentation Through SURface Fairing (FASTSURF) is based on a surface fairing technique which reconstructs the hippocampus from sparse delineations. To validate FASTSURF, simulations were performed in which sparse delineations extracted from full manual segmentations served as input. On three different datasets with different diagnostic groups, FASTSURF hippocampi were compared to the original segmentations using Jaccard overlap indices and percentage volume differences (PVD). In one data set for which back-to-back scans were available, unbiased estimates of overlap and PVD were obtained. Using longitudinal scans, we compared hippocampal atrophy rates measured by manual, FASTSURF and two automatic segmentations (FreeSurfer and FSL-FIRST). Results With only seven input contours, FASTSURF yielded mean Jaccard indices ranging from 72 (±4.3)% to 83(±2.6)% and PVDs ranging from 0.02(±2.40)% to 3.2(±3.40)% across the three datasets. Slightly poorer results were obtained for the unbiased analysis, but the performance was still considerably better than both tested automatic methods with only five contours. Conclusions FASTSURF segmentations have high accuracy and require only a fraction of the delineation effort of fully manual segmentation. Atrophy rate quantification based on completely manual segmentation is well reproduced by FASTSURF. Therefore, FASTSURF is a promising tool to be implemented in clinical workflow, provided a future prospective validation confirms our findings.
Original language | English |
---|---|
Article number | e0210641 |
Pages (from-to) | 1-26 |
Number of pages | 26 |
Journal | PLoS ONE |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 18 Jan 2019 |
Funding
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. This research was also supported by NIH grants P30 AG010129 and K01 AG030514. This study was funded by ZonMW, the Netherlands organisation for health research and development (Grand Number: 104002006), and Netherlands Cancer Institute (NKI) in Amsterdam.
Funders | Funder number |
---|---|
National Institutes of Health | AG010129, AG024904 |
U.S. Department of Defense | W81XWH-12-2-0012 |
National Institute on Aging | K01AG030514 |
ZonMw | 104002006 |