First Search for Nontensorial Gravitational Waves from Known Pulsars

B. P. Abbott*, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Afrough, B. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. AjithG. Allen, A. Allocca, P. A. Altin, A. Amato, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. Antier, S. Appert, K. Arai, M. C. Araya, J. S. Areeda, N. Arnaud, K. G. Arun, S. Ascenzi, G. Ashton, M. Ast, S. M. Aston, P. Astone, M. K.M. Bader, A. Bertolini, H. J. Bulten, W. Del Pozzo, R. J.G. Jonker, T. G.F. Li, J. Meidam, D. S. Rabeling, N. Van Bakel, J. F.J. Van Den Brand, J. Veitch, LIGO Scientific Collaboration and Virgo Collaboration

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.

Original languageEnglish
Article number031104
JournalPhysical Review Letters
Volume120
Issue number3
DOIs
Publication statusPublished - 19 Jan 2018

Funding

We have presented the results of the first direct search for nontensorial gravitational waves. This is also the first search targeted at known pulsars that is sensitive to any of the five measurable polarizations of the gravitational perturbation allowed by a generic metric theory of gravity. From the analysis of O1 data from both aLIGO observatories, we have found no evidence of signals from any of the 200 pulsars targeted. In the absence of a clear signal, we have produced the first direct upper limits for scalar and vector strains (Fig.  4 , and tables in the Supplemental Material [45] ). The values of the 95%-credible upper limits are comparable in magnitude to previously published GR constraints, reaching h ∼ 1.5 × 10 - 26 for pulsars whose frequency is in the most sensitive band of our instruments. This means that, to 95% credibility, none of the pulsars in our set is emitting gravitational waves (tensorial or otherwise) at the frequencies analyzed with enough power for them to reach Earth with amplitudes larger than our upper limits. Our results have been obtained in a theory-independent fashion. However, our upper limits on nontensorial strain can be translated into model-dependent constraints on beyond-GR theories by picking a specific alternative theory and emission mechanism. To do so, one should use the upper limits produced under the assumption of a signal model that incorporates the same polarizations allowed by the theory one wishes to constrain; these may not necessarily be those in Fig.  4 (e.g., for limits on a scalar-tensor theory, one needs upper limits from H s t ). However, this also requires nontrivial knowledge of the dynamics of spinning neutron stars under the theory of interest. While it is conventional to compare the sensitivity of continuous wave searches to the canonical spin-down limit for each pulsar, it is not possible to do so here without committing to a specific theory of gravity. This is because doing so would require specific knowledge of how each polarization contributes to the effective gravitational-wave stress energy, how matter couples to the gravitational field, how the waves propagate (dispersion and dissipation), and what the angular dependence of the emission pattern is. However, analogs of the canonical spin-down limit for specific theories may be obtained from the results presented here by using the strain upper limits obtained assuming the sub-hypotheses with polarizations corresponding to that theory, as mentioned above. We have demonstrated the robustness of searches for generalized polarization states (tensor, vector, or scalar) in gravitational waves from spinning neutron stars. Furthermore, even in the absence of a detection, we were able to obtain novel constraints on the strain amplitude of nontensorial polarizations. In the future, once a signal is detected, similar methods will allow us to characterize the gravitational polarization content and, in so doing, perform novel tests of general relativity. Although this search assumed an emission frequency of twice the rotational frequency of the source, this restriction will be relaxed in future analyses. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen, Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economía y Competitividad, the Conselleria d’Economia i Competitivitat and Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Fundaçao de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen, Germany for provision of computational resources. This paper has been assigned LIGO Document Number LIGO-P1700009. [1] 1 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 061102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102 [2] 2 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 241103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103 [3] 3 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. X 6 , 041015 ( 2016 ). PRXHAE 2160-3308 10.1103/PhysRevX.6.041015 [4] 4 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 221101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101 [5] 5 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 141101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101 [6] 6 M. Isi , Technical Note No.  LIGO-P1700276 , 2017 , https://arxiv.org/abs/1710.03794 . [7] 7 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 161101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101 [8] 8 B. P. Abbott ( LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL ) , Astrophys. J. 848 , L13 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa920c [9] 9 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 221101 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.221101 [10] 10 D. M. Eardley , D. L. Lee , A. P. Lightman , R. V. Wagoner , and C. M. Will , Phys. Rev. Lett. 30 , 884 ( 1973 ). PRLTAO 0031-9007 10.1103/PhysRevLett.30.884 [11] 11 D. Eardley , D. Lee , and A. Lightman , Phys. Rev. D 8 , 3308 ( 1973 ). PRVDAQ 0556-2821 10.1103/PhysRevD.8.3308 [12] 12 C. M. Will , Theory and Experiment in Gravitational Physics ( Cambridge University Press , Cambridge, England, 1993 ), revised ed. [13] 13 C. M. Will , Living Rev. Relativity 17 , 4 ( 2014 ). 1433-8351 10.12942/lrr-2014-4 [14] 14 E. Berti , E. Barausse , V. Cardoso , L. Gualtieri , P. Pani , U. Sperhake , L. C. Stein , N. Wex , K. Yagi , T. Baker , C. P. Burgess , F. S. Coelho , D. Doneva , A. D. Felice , P. G. Ferreira , P. C. C. Freire , J. Healy , C. Herdeiro , M. Horbatsch , B. Kleihaus , , Classical Quantum Gravity 32 , 243001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/24/243001 [15] 15 K. Chatziioannou , N. Yunes , and N. Cornish , Phys. Rev. D 86 , 022004 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.022004 [16] 16 J. M. Weisberg , D. J. Nice , and J. H. Taylor , Astrophys. J. 722 , 1030 ( 2010 ). ASJOAB 1538-4357 10.1088/0004-637X/722/2/1030 [17] 17 P. C. C. Freire , N. Wex , G. Esposito-Farèse , J. P. W. Verbiest , M. Bailes , B. A. Jacoby , M. Kramer , I. H. Stairs , J. Antoniadis , and G. H. Janssen , Mon. Not. R. Astron. Soc. 423 , 3328 ( 2012 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2012.21253.x [18] 18 I. H. Stairs , Living Rev. Relativity 6 , 5 ( 2003 ). 1433-8351 10.12942/lrr-2003-5 [19] 19 N. Wex , arXiv:1402.5594 . [20] 20 M. Isi , A. J. Weinstein , C. Mead , and M. Pitkin , Phys. Rev. D 91 , 082002 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.082002 [21] 21 M. Isi , M. Pitkin , and A. J. Weinstein , Phys. Rev. D 96 , 042001 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.042001 [22] 22 A. Nishizawa , A. Taruya , K. Hayama , S. Kawamura , and M.-a. Sakagami , Phys. Rev. D 79 , 082002 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.79.082002 [23] 23 T. Callister , A. S. Biscoveanu , N. Christensen , M. Isi , A. Matas , O. Minazzoli , T. Regimbau , M. Sakellariadou , J. Tasson , and E. Thrane , Phys. Rev. X 7 , 041058 ( 2017 ). PRXHAE 2160-3308 10.1103/PhysRevX.7.041058 [24] 24 K. S. Thorne , in Three Hundred Years of Gravitation , edited by S. W. Hawking and W. Israel ( Cambridge University Press , Cambridge, England, 1987 ), Chap. 9, pp.  330–458 . [25] 25 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Astrophys. J. 839 , 12 ( 2017 ). ASJOAB 1538-4357 10.3847/1538-4357/aa677f [26] 26 R. J. Dupuis and G. Woan , Phys. Rev. D 72 , 102002 ( 2005 ). PRVDAQ 1550-7998 10.1103/PhysRevD.72.102002 [27] 27 B. P. Abbott ( LIGO Scientific Collaboration ) , Phys. Rev. D 95 , 062003 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.062003 [28] 28 W. G. Anderson , P. R. Brady , J. D. E. Creighton , and É. E. Flanagan , Phys. Rev. D 63 , 042003 ( 2001 ). PRVDAQ 0556-2821 10.1103/PhysRevD.63.042003 [29] 29 A. Błaut , Phys. Rev. D 85 , 043005 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.043005 [30] 30 E. Poisson and C. M. Will , Gravity: Newtonian, Post-Newtonian, Relativistic ( Cambridge University Press , Cambridge, England, 2014 ). [31] 31 M. Zimmermann and E. Szedenits , Phys. Rev. D 20 , 351 ( 1979 ). PRVDAQ 0556-2821 10.1103/PhysRevD.20.351 [32] 32 B. J. Owen , L. Lindblom , C. Cutler , B. F. Schutz , A. Vecchio , and N. Andersson , Phys. Rev. D 58 , 084020 ( 1998 ). PRVDAQ 0556-2821 10.1103/PhysRevD.58.084020 [33] 33 R. Bondarescu , S. A. Teukolsky , and I. Wasserman , Phys. Rev. D 79 , 104003 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.79.104003 [34] 34 D. I. Jones and N. Andersson , Mon. Not. R. Astron. Soc. 331 , 203 ( 2002 ). MNRAA4 0035-8711 10.1046/j.1365-8711.2002.05180.x [35] 35 M. Pitkin , C. Gill , J. Veitch , E. Macdonald , and G. Woan , J. Phys. Conf. Ser. 363 , 012041 ( 2012 ). JPCSDZ 1742-6588 10.1088/1742-6596/363/1/012041 [36] 36 D. Keitel , R. Prix , M. A. Papa , P. Leaci , and M. Siddiqi , Phys. Rev. D 89 , 064023 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.064023 [37] 37 E. Jaynes , IEEE Trans. Syst. Sci. Cybern. 4 , 227 ( 1968 ). 10.1109/TSSC.1968.300117 [38] The specific range chosen for the amplitude priors has little effect on our results, as explained in Appendix B of Ref.  [21] . [39] 39 R. D. Ferdman , I. H. Stairs , M. Kramer , R. P. Breton , M. A. McLaughlin , P. C. C. Freire , A. Possenti , B. W. Stappers , V. M. Kaspi , R. N. Manchester , and A. G. Lyne , Astrophys. J. 767 , 85 ( 2013 ). ASJOAB 1538-4357 10.1088/0004-637X/767/1/85 [40] 40 B. J. Rickett , W. A. Coles , C. F. Nava , M. A. McLaughlin , S. M. Ransom , F. Camilo , R. D. Ferdman , P. C. C. Freire , M. Kramer , A. G. Lyne , and I. H. Stairs , Astrophys. J. 787 , 161 ( 2014 ). ASJOAB 1538-4357 10.1088/0004-637X/787/2/161 [41] 41 W. W. Zhu , I. H. Stairs , P. B. Demorest , D. J. Nice , J. A. Ellis , S. M. Ransom , Z. Arzoumanian , K. Crowter , T. Dolch , R. D. Ferdman , E. Fonseca , M. E. Gonzalez , G. Jones , M. L. Jones , M. T. Lam , L. Levin , M. A. McLaughlin , T. Pennucci , K. Stovall , and J. Swiggum , Astrophys. J. 809 , 41 ( 2015 ). ASJOAB 1538-4357 10.1088/0004-637X/809/1/41 [42] 42 J. Aasi ( LIGO Scientific Collaboration and Virgo Collaboration ) , Astrophys. J. 785 , 119 ( 2014 ). ASJOAB 1538-4357 10.1088/0004-637X/785/2/119 [43] 43 C. Ng and R. W. Romani , Astrophys. J. 601 , 479 ( 2004 ). ASJOAB 1538-4357 10.1086/380486 [44] 44 C. Ng and R. W. Romani , Astrophys. J. 673 , 411 ( 2008 ). ASJOAB 1538-4357 10.1086/523935 [45] 45 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.031104 for expanded tables with odds and upper-limits for all non-GR hypotheses. [46] 46 R. E. Kass and A. E. Raftery , J. Am. Stat. Assoc. 90 , 773 ( 1995 ). JSTNAL 0162-1459 10.1080/01621459.1995.10476572 [47] 47 H. Jeffreys , Theory of Probability , 3rd ed. ( Clarendon Press , Oxford, 1998 ). [48] 48 C. P. Robert , N. Chopin , and J. Rousseau , Stat. Sci. 24 , 141 ( 2009 ). STSCEP 0883-4237 10.1214/09-STS284 [49] 49 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. D 94 , 102002 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.102002 [50] 50 B. P. Abbott , M. A. Papa , H.-B. Eggenstein , and S. Walsh ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. D 96 , 082003 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.082003 [51] 51 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. D 94 , 042002 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.042002 [52] 52 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. D 96 , 062002 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.062002 [53] 53 J. Aasi ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. D 90 , 062010 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.062010

FundersFunder number
Brazilian Ministry of Science, Technology, and Innovation
Department of Science and Technology, India, Science & Engineering Research Board
National Research Foundation of Korea, Industry Canada
National Science Centre of Poland
Natural Science and Engineering Research Council Canada
National Science Foundation
Directorate for Mathematical and Physical Sciences
Division of Human Resource Development
Kavli Foundation
Canadian Institute for Advanced Research
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique
Ontario Ministry of Economic Development and Innovation
Science and Technology Facilities Council
Leverhulme Trust
Royal Society
Scottish Funding Council
Scottish Universities Physics Alliance
European Commission
Australian Research Council
Council of Scientific and Industrial Research, India
Fundação de Amparo à Pesquisa do Estado de São Paulo
Science and Engineering Research Board
Russian Foundation for Basic Research
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Ministerio de Economía y Competitividad
Hungarian Scientific Research Fund
Instituto Nazionale di Fisica Nucleare
Centre National de la Recherche Scientifique
Ministerio de Ciencia y Tecnología
Universitat de les Illes Balears
Istituto Nazionale di Fisica Nucleare

    Fingerprint

    Dive into the research topics of 'First Search for Nontensorial Gravitational Waves from Known Pulsars'. Together they form a unique fingerprint.

    Cite this