TY - JOUR
T1 - Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs
AU - Toh, K.C.
AU - Stojkovic, E.A
AU - van Stokkum, I.H.M.
AU - Moffat, K.
AU - Kennis, J.T.M.
PY - 2011
Y1 - 2011
N2 - Bacteriophytochromes (Bphs) are red-light photoreceptor proteins with a photosensory core that consists of three distinct domains, PAS, GAF and PHY, and covalently binds biliverdin (BV) to a conserved cysteine in the PAS domain. In a recent development, PAS-GAF variants were engineered for use as a near-infrared fluorescent marker in mammalian tissues (Tsien and co-workers, Science, 2009, 324, 804-807). Here, we report the fluorescence quantum yield and photochemistry of two highly-related Bphs from Rps. palustris, RpBphP2 (P2) and RpBphP3 (P3) with distinct photoconversion and fluorescence properties. We applied ultrafast spectroscopy to wild type P3 and P2 PAS-GAF proteins and their P3 D216A, Y272F and P2 D202A PAS-GAF-PHY mutant proteins. In these mutants hydrogen-bond interactions between a conserved aspartate (Asp) which connects the BV chromophore with the PHY domains are disrupted. The excited-state lifetime of the truncated P3 and P2 PAS-GAF proteins was significantly longer than in their PAS-GAF-PHY counterparts that constitute the full photosensory core. Mutation of the conserved Asp to Ala in the PAS-GAF-PHY protein had a similar but larger effect. The fluorescence quantum yields of the P3 D216A and Y272F mutants were 0.066, higher than that of wild type P3 (0.043) and similar to the engineered Bph of Tsien and co-workers. We conclude that elimination of a key hydrogen-bond interaction between Asp and a conserved Arg in the PHY domain is responsible for the excited-state lifetime increase in all Bph variants studied here. H/D exchange resulted in a 1.4-1.7 fold increase of excited-state lifetime. The results support a reaction model in which deactivation of the BV chromophore proceeds via excited-state proton transfer from the BV pyrrole nitrogens to the backbone of the conserved Asp or to a bound water. This work may aid in rational structure- and mechanism-based conversion of constructs based on P3 and other BPhs into efficient near-IR, deep tissue, fluorescent markers. © the Owner Societies 2011.
AB - Bacteriophytochromes (Bphs) are red-light photoreceptor proteins with a photosensory core that consists of three distinct domains, PAS, GAF and PHY, and covalently binds biliverdin (BV) to a conserved cysteine in the PAS domain. In a recent development, PAS-GAF variants were engineered for use as a near-infrared fluorescent marker in mammalian tissues (Tsien and co-workers, Science, 2009, 324, 804-807). Here, we report the fluorescence quantum yield and photochemistry of two highly-related Bphs from Rps. palustris, RpBphP2 (P2) and RpBphP3 (P3) with distinct photoconversion and fluorescence properties. We applied ultrafast spectroscopy to wild type P3 and P2 PAS-GAF proteins and their P3 D216A, Y272F and P2 D202A PAS-GAF-PHY mutant proteins. In these mutants hydrogen-bond interactions between a conserved aspartate (Asp) which connects the BV chromophore with the PHY domains are disrupted. The excited-state lifetime of the truncated P3 and P2 PAS-GAF proteins was significantly longer than in their PAS-GAF-PHY counterparts that constitute the full photosensory core. Mutation of the conserved Asp to Ala in the PAS-GAF-PHY protein had a similar but larger effect. The fluorescence quantum yields of the P3 D216A and Y272F mutants were 0.066, higher than that of wild type P3 (0.043) and similar to the engineered Bph of Tsien and co-workers. We conclude that elimination of a key hydrogen-bond interaction between Asp and a conserved Arg in the PHY domain is responsible for the excited-state lifetime increase in all Bph variants studied here. H/D exchange resulted in a 1.4-1.7 fold increase of excited-state lifetime. The results support a reaction model in which deactivation of the BV chromophore proceeds via excited-state proton transfer from the BV pyrrole nitrogens to the backbone of the conserved Asp or to a bound water. This work may aid in rational structure- and mechanism-based conversion of constructs based on P3 and other BPhs into efficient near-IR, deep tissue, fluorescent markers. © the Owner Societies 2011.
U2 - 10.1039/c1cp00050k
DO - 10.1039/c1cp00050k
M3 - Article
SN - 1463-9076
VL - 13
SP - 11985
EP - 11997
JO - Physical Chemistry Chemical Physics - PCCP
JF - Physical Chemistry Chemical Physics - PCCP
IS - 25
ER -