Abstract
Fly ash (FA) is a very alkaline, hazardous waste with a potential to be recycled in amelioration of master pedovariables, notably: i) pH, drives soil biogeochemistry, ii) electrical conductivity (EC), reflects soil salinity level and overall soil health, iii) water holding capacity (WHC), determines soil hydraulic functions and iv) bulk denisity (BD), indicates soil compaction and water-air relations. We performed a multilevel meta-analysis, encompassing 30 out of 1325 screend studies, using a random effect model and non-aggregated data sets. By moderating; experimental type, FA application rate, soil type and land use, two distinct meta-analytical approaches on observed pedovariables were performed: i) uni-moderator, considering moderators separately, and ii) multi-moderator, considering moderators combined. It was found that FA application: increased soil pH by 15.4% (Hedge's g = 8.07), EC by 51.7% (Hedge's g = 8.07), WHC by 22.6% (Hedge's g = 7.79), and reduced BD by 13.5% (Hedge's g = −5.03). However, the uni-moderator meta-analytical model revealed a significant increase in pH and EC only with relatively lower FA dosage (up to 20%). In addition, the impact of FA on pH and EC was significantly positive in acid (pHH2O < 6.5), negative in alkaline (pHH2O > 7.2), and not significant in neutral (pHH2O = 6.6–7.2) soil types. The same uni-moderator approach revealed that FA dosages above 5% significantly increased WHC, but reduced BD. Moreover, the multi-moderator model identified two significant interactions: i) between varying FA dosage and land use, and ii) between varying FA dosage and soil type. Confirmed positive implications of FA on key soil properties underscore its strong potential as a valuable resource for sustainable soil management, mitigating widespread soil constraints and contributing waste reduction. However, careful consideration of FA dosage, soil type, and land use is imperative to optimize FA application and prevent potential adverse environmental implications.
Original language | English |
---|---|
Article number | 122066 |
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | Journal of Environmental Management |
Volume | 368 |
Early online date | 7 Aug 2024 |
DOIs | |
Publication status | Published - Sept 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Authors
Keywords
- Fly ash
- Multilevel meta-analysis
- Soil chemical amelioration
- Waste reduction