TY - JOUR
T1 - Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis
AU - Brauning, F.U.
AU - Koopman, S.J.
PY - 2014
Y1 - 2014
N2 - We explore a new approach to the forecasting of macroeconomic variables based on a dynamic factor state space analysis. Key economic variables are modeled jointly with principal components from a large time series panel of macroeconomic indicators using a multivariate unobserved components time series model. When the key economic variables are observed at a low frequency and the panel of macroeconomic variables is at a high frequency, we can use our approach for both nowcasting and forecasting purposes. Given a dynamic factor model as the data generation process, we provide Monte Carlo evidence of the finite-sample justification of our parsimonious and feasible approach. We also provide empirical evidence for a US macroeconomic dataset. The unbalanced panel contains quarterly and monthly variables. The forecasting accuracy is measured against a set of benchmark models. We conclude that our dynamic factor state space analysis can lead to higher levels of forecasting precision when the panel size and time series dimensions are moderate. © 2013 International Institute of Forecasters.
AB - We explore a new approach to the forecasting of macroeconomic variables based on a dynamic factor state space analysis. Key economic variables are modeled jointly with principal components from a large time series panel of macroeconomic indicators using a multivariate unobserved components time series model. When the key economic variables are observed at a low frequency and the panel of macroeconomic variables is at a high frequency, we can use our approach for both nowcasting and forecasting purposes. Given a dynamic factor model as the data generation process, we provide Monte Carlo evidence of the finite-sample justification of our parsimonious and feasible approach. We also provide empirical evidence for a US macroeconomic dataset. The unbalanced panel contains quarterly and monthly variables. The forecasting accuracy is measured against a set of benchmark models. We conclude that our dynamic factor state space analysis can lead to higher levels of forecasting precision when the panel size and time series dimensions are moderate. © 2013 International Institute of Forecasters.
U2 - 10.1016/j.ijforecast.2013.03.004
DO - 10.1016/j.ijforecast.2013.03.004
M3 - Article
SN - 0169-2070
VL - 30
SP - 572
EP - 584
JO - International Journal of Forecasting
JF - International Journal of Forecasting
IS - 3
ER -