Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs

R.J. Corbee, H. Maas, A Doornenbal, H.A.W. Hazewinkel

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and compared with ground reaction forces of 24 healthy dogs. Force-time waveforms in cats generated by force plate analysis were consistent, as reflected by intra-class correlation coefficients for peak vertical force, peak propulsive force and peak braking force (0.94-0.95, 0.85-0.89 and 0.89-0.90, respectively). Compared with dogs, cats had a higher peak vertical force during the propulsion phase (cat, 3.89 ± 0.19 N/kg; dog, 3.03 ± 0.16 N/kg), and a higher hindlimb propulsive force (cat, -1.08 ± 0.13 N/kg; dog, (-0.87 ± 0.13 N/kg) and hindlimb impulse (cat, -0.18 ± 0.03 N/kg; dog, -0.14 ± 0.02 N/kg). Force plate analysis is a valuable tool for the assessment of locomotion in cats, because it can be applied in the clinical setting and provides a non-invasive and objective measurement of locomotion characteristics with high repeatability in cats, as well as information about kinetic characteristics. Differences in force-time waveforms between cats and dogs can be explained by the more crouched position of cats during stance and their more compliant gait compared with dogs. Feline waveforms of the medio-lateral ground reaction forces also differ between cats and dogs and this can be explained by differences in paw supination-pronation. © 2014 Elsevier Ltd. All rights reserved.

    Original languageEnglish
    Pages (from-to)116-127
    JournalVeterinary Journal
    Volume202
    Issue number1
    DOIs
    Publication statusPublished - 2014

    Keywords

    • Biomechanics
    • Canine
    • Feline
    • Force plate analysis
    • Osteoarthritis

    Fingerprint

    Dive into the research topics of 'Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs'. Together they form a unique fingerprint.

    Cite this