Abstract
We study the thermodynamics of massless 4-theory using screened perturbation theory. In this method, the perturbative expansion is reorganized by adding and subtracting a thermal mass term in the Lagrangian. We calculate the free energy through four loops expanding in a double power expansion in m/T and g2, where m is the thermal mass and g is the coupling constant. The expansion is truncated at order g7 and the loop expansion is shown to have better convergence properties than the weak-coupling expansion. The free energy at order g6 involves the four-loop triangle sum-integral evaluated by Gynther, Laine, Schröder, Torrero, and Vuorinen using the methods developed by Arnold and Zhai. The evaluation of the free energy at order g7 requires the evaluation of a nontrivial three-loop sum-integral, which we calculate by the same methods. © 2008 The American Physical Society.
Original language | English |
---|---|
Journal | Physical Review D |
Volume | 78 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2008 |