Free SepF interferes with recruitment of late cell division proteins

Yongqiang Gao, Michaela Wenzel, Martijs J. Jonker, Leendert W. Hamoen*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review


The conserved cell division protein SepF aligns polymers of FtsZ, the key cell division protein in bacteria, during synthesis of the (Fts)Z-ring at midcell, the first stage in cytokinesis. In addition, SepF acts as a membrane anchor for the Z-ring. Recently, it was shown that SepF overexpression in Mycobacterium smegmatis blocks cell division. Why this is the case is not known. Surprisingly, we found in Bacillus subtilis that SepF overproduction does not interfere with Z-ring assembly, but instead blocks assembly of late division proteins responsible for septum synthesis. Transposon mutagenesis suggested that SepF overproduction suppresses the essential WalRK two-component system, which stimulates expression of ftsZ. Indeed, it emerged that SepF overproduction impairs normal WalK localization. However, transcriptome analysis showed that the WalRK activity was in fact not reduced in SepF overexpressing cells. Further experiments indicated that SepF competes with EzrA and FtsA for binding to FtsZ, and that binding of extra SepF by FtsZ alleviates the cell division defect. This may explain why activation of WalRK in the transposon mutant, which increases ftsZ expression, counteracts the division defect. In conclusion, our data shows that an imbalance in early cell division proteins can interfere with recruitment of late cell division proteins.

Original languageEnglish
Article number16928
JournalScientific Reports
Issue number1
Publication statusPublished - 1 Dec 2017
Externally publishedYes


Dive into the research topics of 'Free SepF interferes with recruitment of late cell division proteins'. Together they form a unique fingerprint.

Cite this