TY - JOUR
T1 - GABAergic inhibition shapes frequency adaptation of cortical activity in a frequency-dependent manner
AU - Heistek, T.S.
AU - Lodder, J.C.
AU - Brussaard, A.B.
AU - Bosman, L.W.J.
AU - Mansvelder, H.D.
PY - 2010
Y1 - 2010
N2 - Primary sensory cortical areas continuously receive thalamic inputs that arrive at different frequencies depending on the amount of sensory activity. The cortical response to repeated sensory stimuli rapidly adapts and different frequencies recruit cortical neuronal networks to different extents. GABAergic inhibition limits the spread of excitation within cortical neuronal networks. However, it is unknown how frequency adaptation of cortical network activity at different frequencies is shaped by GABAergic inhibition. Here, we find that in acute slices of visual cortex area V1 GABAergic inhibition affects frequency adaptation depending on the frequency of activity. Using voltage-sensitive dye imaging, we found that while increasing inhibitory postsynaptic currents (IPSCs) with flunitrazepam dampened the spread of cortical excitation, short-term adaptations to different stimulation frequencies were differentially affected. At high frequencies (40 Hz), facilitation of cortical excitation was no longer transient, but facilitation was sustained. At low frequencies (10 Hz) flunitrazepam decreased a depression of the excitation. In contrast, in mice lacking the GABA
AB - Primary sensory cortical areas continuously receive thalamic inputs that arrive at different frequencies depending on the amount of sensory activity. The cortical response to repeated sensory stimuli rapidly adapts and different frequencies recruit cortical neuronal networks to different extents. GABAergic inhibition limits the spread of excitation within cortical neuronal networks. However, it is unknown how frequency adaptation of cortical network activity at different frequencies is shaped by GABAergic inhibition. Here, we find that in acute slices of visual cortex area V1 GABAergic inhibition affects frequency adaptation depending on the frequency of activity. Using voltage-sensitive dye imaging, we found that while increasing inhibitory postsynaptic currents (IPSCs) with flunitrazepam dampened the spread of cortical excitation, short-term adaptations to different stimulation frequencies were differentially affected. At high frequencies (40 Hz), facilitation of cortical excitation was no longer transient, but facilitation was sustained. At low frequencies (10 Hz) flunitrazepam decreased a depression of the excitation. In contrast, in mice lacking the GABA
U2 - 10.1016/j.brainres.2010.01.047
DO - 10.1016/j.brainres.2010.01.047
M3 - Article
VL - 1321
SP - 31
EP - 39
JO - Brain Research
JF - Brain Research
SN - 0006-8993
ER -