Global Surface Soil Moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite

R.M. Parinussa, G. Wang, T.R.H. Holmes, Y.Y. Liu, A.J. Dolman, R.A.M. de Jeu, T. Jiang

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Soil moisture retrievals from China’s recently launched meteorological Fengyun-3B satellite are presented. An established retrieval algorithm – the Land Parameter Retrieval Model (LPRM) – was applied to observations of the Microwave Radiation Imager (MWRI) onboard this satellite. The newly developed soil moisture retrievals from this satellite mission may be incorporated in an existing global microwave-based soil moisture database. To reach consistency with an existing data set of multi-satellite soil moisture retrievals, an intercalibration step was applied to correct brightness temperatures for sensor differences between MWRI and the radiometer of the Tropical Rainfall Measuring Mission’s (TRMM’s) Microwave Imager (TMI), resulting from their individual calibration procedures. The newly derived soil moisture and vegetation optical depth product showed a high degree of consistency with parallel retrievals from both TMI and WindSat, the two satellites that are observing during the same time period and are already part of the LPRM database. High correlation (R > 0.60 at night-time) between the LPRM and official MWRI soil moisture products was shown over the validation networks experiencing semiarid climate conditions. The skills drop below 0.50 over forested regions, with the performance of the LPRM product slightly better than the official MWRI product. To demonstrate the promising use of the MWRI soil moisture in drought monitoring, a case study for a recent and unusually dry East Asian summer Monsoon was conducted. The MWRI soil moisture products are able to effectively delineate the regions that are experiencing a considerable drought, highly in agreement with spatial patterns of precipitation and temperature anomalies. The results in this study give confidence in the soil moisture retrievals from the MWRI onboard Fengyun-3B. The integration of the newly derived products into the existing database will allow a better understanding the diurnal, seasonal and interannual variations, and long-term (35 year) changes of soil moisture at the global scale, consequently enhancing hydrological, meteorological, and climate studies.
Original languageEnglish
JournalInternational Journal of Remote Sensing
Volume35
DOIs
Publication statusPublished - 2014

Fingerprint

microwave radiation
soil moisture
TRMM
WindSat
drought
FengYun
satellite mission
climate conditions
brightness temperature
temperature anomaly
radiometer
optical depth
diurnal variation
annual variation
product
monsoon
seasonal variation
sensor
calibration

Cite this

Parinussa, R.M. ; Wang, G. ; Holmes, T.R.H. ; Liu, Y.Y. ; Dolman, A.J. ; de Jeu, R.A.M. ; Jiang, T. / Global Surface Soil Moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite. In: International Journal of Remote Sensing. 2014 ; Vol. 35.
@article{f22ef8d4bd7048c9af31354fd0d9b668,
title = "Global Surface Soil Moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite",
abstract = "Soil moisture retrievals from China’s recently launched meteorological Fengyun-3B satellite are presented. An established retrieval algorithm – the Land Parameter Retrieval Model (LPRM) – was applied to observations of the Microwave Radiation Imager (MWRI) onboard this satellite. The newly developed soil moisture retrievals from this satellite mission may be incorporated in an existing global microwave-based soil moisture database. To reach consistency with an existing data set of multi-satellite soil moisture retrievals, an intercalibration step was applied to correct brightness temperatures for sensor differences between MWRI and the radiometer of the Tropical Rainfall Measuring Mission’s (TRMM’s) Microwave Imager (TMI), resulting from their individual calibration procedures. The newly derived soil moisture and vegetation optical depth product showed a high degree of consistency with parallel retrievals from both TMI and WindSat, the two satellites that are observing during the same time period and are already part of the LPRM database. High correlation (R > 0.60 at night-time) between the LPRM and official MWRI soil moisture products was shown over the validation networks experiencing semiarid climate conditions. The skills drop below 0.50 over forested regions, with the performance of the LPRM product slightly better than the official MWRI product. To demonstrate the promising use of the MWRI soil moisture in drought monitoring, a case study for a recent and unusually dry East Asian summer Monsoon was conducted. The MWRI soil moisture products are able to effectively delineate the regions that are experiencing a considerable drought, highly in agreement with spatial patterns of precipitation and temperature anomalies. The results in this study give confidence in the soil moisture retrievals from the MWRI onboard Fengyun-3B. The integration of the newly derived products into the existing database will allow a better understanding the diurnal, seasonal and interannual variations, and long-term (35 year) changes of soil moisture at the global scale, consequently enhancing hydrological, meteorological, and climate studies.",
author = "R.M. Parinussa and G. Wang and T.R.H. Holmes and Y.Y. Liu and A.J. Dolman and {de Jeu}, R.A.M. and T. Jiang",
year = "2014",
doi = "10.1080/01431161.2014.960622",
language = "English",
volume = "35",
journal = "International Journal of Remote Sensing",
issn = "0143-1161",
publisher = "Taylor and Francis Ltd.",

}

Global Surface Soil Moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite. / Parinussa, R.M.; Wang, G.; Holmes, T.R.H.; Liu, Y.Y.; Dolman, A.J.; de Jeu, R.A.M.; Jiang, T.

In: International Journal of Remote Sensing, Vol. 35, 2014.

Research output: Contribution to JournalArticleAcademicpeer-review

TY - JOUR

T1 - Global Surface Soil Moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite

AU - Parinussa, R.M.

AU - Wang, G.

AU - Holmes, T.R.H.

AU - Liu, Y.Y.

AU - Dolman, A.J.

AU - de Jeu, R.A.M.

AU - Jiang, T.

PY - 2014

Y1 - 2014

N2 - Soil moisture retrievals from China’s recently launched meteorological Fengyun-3B satellite are presented. An established retrieval algorithm – the Land Parameter Retrieval Model (LPRM) – was applied to observations of the Microwave Radiation Imager (MWRI) onboard this satellite. The newly developed soil moisture retrievals from this satellite mission may be incorporated in an existing global microwave-based soil moisture database. To reach consistency with an existing data set of multi-satellite soil moisture retrievals, an intercalibration step was applied to correct brightness temperatures for sensor differences between MWRI and the radiometer of the Tropical Rainfall Measuring Mission’s (TRMM’s) Microwave Imager (TMI), resulting from their individual calibration procedures. The newly derived soil moisture and vegetation optical depth product showed a high degree of consistency with parallel retrievals from both TMI and WindSat, the two satellites that are observing during the same time period and are already part of the LPRM database. High correlation (R > 0.60 at night-time) between the LPRM and official MWRI soil moisture products was shown over the validation networks experiencing semiarid climate conditions. The skills drop below 0.50 over forested regions, with the performance of the LPRM product slightly better than the official MWRI product. To demonstrate the promising use of the MWRI soil moisture in drought monitoring, a case study for a recent and unusually dry East Asian summer Monsoon was conducted. The MWRI soil moisture products are able to effectively delineate the regions that are experiencing a considerable drought, highly in agreement with spatial patterns of precipitation and temperature anomalies. The results in this study give confidence in the soil moisture retrievals from the MWRI onboard Fengyun-3B. The integration of the newly derived products into the existing database will allow a better understanding the diurnal, seasonal and interannual variations, and long-term (35 year) changes of soil moisture at the global scale, consequently enhancing hydrological, meteorological, and climate studies.

AB - Soil moisture retrievals from China’s recently launched meteorological Fengyun-3B satellite are presented. An established retrieval algorithm – the Land Parameter Retrieval Model (LPRM) – was applied to observations of the Microwave Radiation Imager (MWRI) onboard this satellite. The newly developed soil moisture retrievals from this satellite mission may be incorporated in an existing global microwave-based soil moisture database. To reach consistency with an existing data set of multi-satellite soil moisture retrievals, an intercalibration step was applied to correct brightness temperatures for sensor differences between MWRI and the radiometer of the Tropical Rainfall Measuring Mission’s (TRMM’s) Microwave Imager (TMI), resulting from their individual calibration procedures. The newly derived soil moisture and vegetation optical depth product showed a high degree of consistency with parallel retrievals from both TMI and WindSat, the two satellites that are observing during the same time period and are already part of the LPRM database. High correlation (R > 0.60 at night-time) between the LPRM and official MWRI soil moisture products was shown over the validation networks experiencing semiarid climate conditions. The skills drop below 0.50 over forested regions, with the performance of the LPRM product slightly better than the official MWRI product. To demonstrate the promising use of the MWRI soil moisture in drought monitoring, a case study for a recent and unusually dry East Asian summer Monsoon was conducted. The MWRI soil moisture products are able to effectively delineate the regions that are experiencing a considerable drought, highly in agreement with spatial patterns of precipitation and temperature anomalies. The results in this study give confidence in the soil moisture retrievals from the MWRI onboard Fengyun-3B. The integration of the newly derived products into the existing database will allow a better understanding the diurnal, seasonal and interannual variations, and long-term (35 year) changes of soil moisture at the global scale, consequently enhancing hydrological, meteorological, and climate studies.

U2 - 10.1080/01431161.2014.960622

DO - 10.1080/01431161.2014.960622

M3 - Article

VL - 35

JO - International Journal of Remote Sensing

JF - International Journal of Remote Sensing

SN - 0143-1161

ER -