GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

Moritz K. Lehmann*, Daniela Gurlin, Nima Pahlevan, Krista Alikas, Janet Anstee, Sundarabalan V. Balasubramanian, Cláudio C.F. Barbosa, Caren Binding, Astrid Bracher, Mariano Bresciani, Ashley Burtner, Zhigang Cao, Arnold G. Dekker, Courtney Di Vittorio, Nathan Drayson, Reagan M. Errera, Virginia Fernandez, Dariusz Ficek, Cédric G. Fichot, Peter GegeClaudia Giardino, Anatoly A. Gitelson, Steven R. Greb, Hayden Henderson, Hiroto Higa, Abolfazl Irani Rahaghi, Cédric Jamet, Dalin Jiang, Thomas Jordan, Kersti Kangro, Jeremy A. Kravitz, Arne S. Kristoffersen, Raphael Kudela, Lin Li, Martin Ligi, Hubert Loisel, Steven Lohrenz, Ronghua Ma, Daniel A. Maciel, Tim J. Malthus, Bunkei Matsushita, Mark Matthews, Camille Minaudo, Deepak R. Mishra, Sachidananda Mishra, Tim Moore, Wesley J. Moses, Hà Nguyễn, Evlyn M.L.M. Novo, Stéfani Novoa, Daniel Odermatt, David M. O’Donnell, Leif G. Olmanson, Michael Ondrusek, Natascha Oppelt, Sylvain Ouillon, Waterloo Pereira Filho, Stefan Plattner, Antonio Ruiz Verdú, Salem I. Salem, John F. Schalles, Stefan G.H. Simis, Eko Siswanto, Brandon Smith, Ian Somlai-Schweiger, Mariana A. Soppa, Evangelos Spyrakos, Elinor Tessin, Hendrik J. van der Woerd, Andrea Vander Woude, Ryan A. Vandermeulen, Vincent Vantrepotte, Marcel R. Wernand, Mortimer Werther, Kyana Young, Linwei Yue

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

Original languageEnglish
Article number100
Pages (from-to)1-14
Number of pages14
JournalScientific Data
Volume10
DOIs
Publication statusPublished - 16 Feb 2023

Bibliographical note

Funding Information:
Funding sources include: Estonian Ministry of Education and Research; European Commission FP7, H2020, FP7-ENV-2007-1-226224; Estonian Research Council; Helmholtz Infrastructure Initiative FRAM; BMBF 03G0218A; New Zealand Ministry for Business, Innovation & Employment grants UOWX1503, UOWX1802, KENTR1601, NASA ROSES grants 80HQTR19C0015, 80NSSC 21K0499, 80NSSC22K1389, and USGS Landsat Science Team Award 140G0118C0011, Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant number 105.08-2019.329, Federal Ministry for Economic Affairs and Energy, Germany, Award: LAKESAT 50EE1340, EnMAP CalVal 50EE1923, TypSynSat 50EE1915.

Publisher Copyright:
© 2023, The Author(s).

Funding

Funding sources include: Estonian Ministry of Education and Research; European Commission FP7, H2020, FP7-ENV-2007-1-226224; Estonian Research Council; Helmholtz Infrastructure Initiative FRAM; BMBF 03G0218A; New Zealand Ministry for Business, Innovation & Employment grants UOWX1503, UOWX1802, KENTR1601, NASA ROSES grants 80HQTR19C0015, 80NSSC 21K0499, 80NSSC22K1389, and USGS Landsat Science Team Award 140G0118C0011, Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant number 105.08-2019.329, Federal Ministry for Economic Affairs and Energy, Germany, Award: LAKESAT 50EE1340, EnMAP CalVal 50EE1923, TypSynSat 50EE1915.

FundersFunder number
Helmholtz Infrastructure Initiative FRAM
National Aeronautics and Space Administration80NSSC22K1389, 80HQTR19C0015, 80NSSC 21K0499
National Aeronautics and Space Administration
U.S. Geological Survey140G0118C0011
U.S. Geological Survey
National Foundation for Science and Technology Development105.08-2019.329
National Foundation for Science and Technology Development
European CommissionFP7-ENV-2007-1-226224, H2020
European Commission
Eesti Teadusagentuur
Bundesministerium für Bildung und Forschung03G0218A
Bundesministerium für Bildung und Forschung
Haridus- ja Teadusministeerium
Ministry of Business, Innovation and EmploymentUOWX1802, UOWX1503, KENTR1601
Ministry of Business, Innovation and Employment
Bundesministerium für Wirtschaft und EnergieLAKESAT 50EE1340, 50EE1915, 50EE1923
Bundesministerium für Wirtschaft und Energie

    Fingerprint

    Dive into the research topics of 'GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality'. Together they form a unique fingerprint.
    • GLORIA - A global dataset of remote sensing reflectance and water quality from inland and coastal waters

      Lehmann, M. K. (Contributor), Gurlin, D. (Contributor), Pahlevan, N. (Contributor), Alikas, K. (Contributor), Anstee, J. (Contributor), Balasubramanian, S. V. (Contributor), Barbosa, C. C. F. (Contributor), Binding, C. (Contributor), Bracher, A. (Contributor), Bresciani, M. (Contributor), Burtner, A. (Contributor), Cao, Z. (Contributor), Dekker, A. G. (Contributor), Di Vittorio, C. (Contributor), Drayson, N. (Contributor), Errera, R. M. (Contributor), Fernandez, V. (Contributor), Ficek, D. (Contributor), Fichot, C. G. (Contributor), Gege, P. (Contributor), Giardino, C. (Contributor), Gitelson, A. A. (Contributor), Greb, S. R. (Contributor), Henderson, H. (Contributor), Higa, H. (Contributor), Rahaghi, A. I. (Contributor), Jamet, C. (Contributor), Jiang, D. (Contributor), Jordan, T. (Contributor), Kangro, K. (Contributor), Kravitz, J. A. (Contributor), Kristoffersen, A. S. (Contributor), Kudela, R. (Contributor), Li, L. (Contributor), Ligi, M. (Contributor), Loisel, H. (Contributor), Lohrenz, S. (Contributor), Ma, R. (Contributor), Maciel, D. A. (Contributor), Malthus, T. J. (Contributor), Matsushita, B. (Contributor), Matthews, M. (Contributor), Minaudo, C. (Contributor), Mishra, D. R. (Contributor), Mishra, S. (Contributor), Moore, T. (Contributor), Moses, W. J. (Contributor), Nguyễn, H. (Contributor), Novo, E. M. L. M. (Contributor), Novoa, S. (Contributor), Odermatt, D. (Contributor), O’Donnell, D. M. (Contributor), Olmanson, L. G. (Contributor), Ondrusek, M. (Contributor), Oppelt, N. (Contributor), Ouillon, S. (Contributor), Pereira Filho, W. (Contributor), Plattner, S. (Contributor), Verdú, A. R. (Contributor), Salem, S. I. (Contributor), Schalles, J. F. (Contributor), Simis, S. G. H. (Contributor), Siswanto, E. (Contributor), Smith, B. (Contributor), Somlai-Schweiger, I. (Contributor), Soppa, M. A. (Contributor), Spyrakos, E. (Contributor), Tessin, E. (Contributor), van der Woerd, H. J. (Contributor), Vander Woude, A. (Contributor), Vandermeulen, R. A. (Contributor), Vantrepotte, V. (Contributor), Wernand, M. R. (Contributor), Werther, M. (Contributor), Young, K. (Contributor) & Yue, L. (Contributor), PANGAEA, 2022

      Dataset / Software: Dataset

    Cite this