GLP-1 Receptor Activation Modulates Appetite- and Reward-Related Brain Areas in Humans

L. van Bloemendaal, R.G. IJzerman, J.S. ten Kulve, F. Barkhof, R.J. Konrad, M.L. Drent, D.J. Veltman, M. Diamant

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Gut-derived hormones, such as GLP-1, have been proposed to relay information to the brain to regulate appetite. GLP-1 receptor agonists, currently used for the treatment of type 2 diabetes (T2DM), improve glycemic control and stimulate satiety, leading to decreases in food intake and body weight. We hypothesized that food intake reduction after GLP-1 receptor activation is mediated through appetite- and reward-related brain areas. Obese T2DM patients and normoglycemic obese and lean individuals (n = 48) were studied in a randomized, crossover, placebo-controlled trial. Using functional MRI, we determined the acute effects of intravenous administration of the GLP-1 receptor agonist exenatide, with or without prior GLP-1 receptor blockade using exendin 9-39, on brain responses to food pictures during a somatostatin pancreatic-pituitary clamp. Obese T2DM patients and normoglycemic obese versus lean subjects showed increased brain responses to food pictures in appetite- and reward-related brain regions (insula and amygdala). Exenatide versus placebo decreased food intake and food-related brain responses in T2DM patients and obese subjects (in insula, amygdala, putamen, and orbitofrontal cortex). These effects were largely blocked by prior GLP-1 receptor blockade using exendin 9-39. Our findings provide novel insights into the mechanisms by which GLP-1 regulates food intake and how GLP-1 receptor agonists cause weight loss.
Original languageEnglish
Pages (from-to)4186-4196
JournalDiabetes
Volume63
Issue number12
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'GLP-1 Receptor Activation Modulates Appetite- and Reward-Related Brain Areas in Humans'. Together they form a unique fingerprint.

Cite this