GW100: A Slater-Type Orbital Perspective

Arno Förster*, Lucas Visscher

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

We calculate complete basis set (CBS) limit-extrapolated ionization potentials (IPs) and electron affinities (EA) with Slater-type basis sets for the molecules in the GW100 database. To this end, we present two new Slater-type orbital (STO) basis sets of triple-(TZ) and quadruple-ζ (QZ) quality, whose polarization is adequate for correlated-electron methods and which contain extra diffuse functions to be able to correctly calculate EAs of molecules with a positive lowest unoccupied molecular orbital (LUMO). We demonstrate that going from TZ to QZ quality consistently reduces the basis set error of our computed IPs and EAs, and we conclude that a good estimate of these quantities at the CBS limit can be obtained by extrapolation. With mean absolute deviations (MAD) from 70 to 85 meV, our CBS limit-extrapolated IP are in good agreement with results from FHI-AIMS, TURBOMOLE, VASP, and WEST, while they differ by more than 130 meV on average from nanoGW. With a MAD of 160 meV, our EA are also in good agreement with the WEST code. Especially for systems with positive LUMOs, the agreement is excellent. With respect to other codes, the STO-type basis sets generally underestimate EAs of small molecules with strongly bound LUMOs. With 62 meV for IPs and 93 meV for EAs, we find much better agreement with CBS limit-extrapolated results from FHI-AIMS for a set of 250 medium to large organic molecules.

Original languageEnglish
Pages (from-to)5080-5097
Number of pages18
JournalJournal of chemical theory and computation
Volume17
Issue number8
Early online date8 Jul 2021
DOIs
Publication statusPublished - 10 Aug 2021

Bibliographical note

Funding Information:
This research received funding from the Netherlands Organisation for Scientific Research (NWO) in the framework of the Innovation Fund for Chemistry and from the Ministry of Economic Affairs in the framework of the “TKI/PPS-Toeslagregeling”. The authors thank Erik van Lenthe for fruitful discussion.

Publisher Copyright:
© 2021 The Authors. Published by American Chemical Society.

Fingerprint

Dive into the research topics of 'GW100: A Slater-Type Orbital Perspective'. Together they form a unique fingerprint.

Cite this