GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 Hz)=1.8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f=25 Hz)=1.1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

Original languageEnglish
Article number091101
JournalPhysical Review Letters
Volume120
Issue number9
DOIs
Publication statusPublished - 28 Feb 2018

Funding

The first gravitational wave detection of a binary neutron star system implies a significant contribution to the stochastic gravitational-wave background from BNS mergers. Assuming the median merger rates, the background may be detected with SNR = 3 after 40 months of accumulated observation time, during the design phase (2022+) [44] . In the most optimistic case, an astrophysical background may be observed at a level of 3 σ after only 18 months of observation, during O3, the next observing run. There are additional factors which may lead to an even earlier detection. First, the presence of additional sources, for example, black hole-neutron star (BHNS) systems, will further add to the total background. Even small contributions to the background can decrease the time to detection. Previous estimates in the literature, for example [50,51] , suggest that the BHNS will contribute roughly a few percent to the total background, although the uncertainty is large. Second, the analysis we have presented here assumes the standard cross-correlation search. Specialized non-Gaussian searches may be more sensitive, particularly to the BBH background [52–54] . Unlike a standard matched filter search, non-Gaussian pipelines do not attempt to find individual events, but rather to measure the rate of subthreshold events independently of their distribution. A detection of the astrophysical background allows for a rich set of follow-up studies to fully understand its composition. The difference in the time-domain structure of the BBH and BNS signals may allow the BNS and BBH backgrounds to be measured independently. After detecting the background, stochastic analyses can address whether the background is isotropic [55–57] , unpolarized [58] , and consistent with general relativity [59] . Finally, understanding the astrophysical background is crucial to subtract it and enable searches for a background of cosmological origin [49] . The authors gratefully acknowledge the support of the U.S. National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned the document number LIGO-P1700272. [1] 1 J. Aasi ( LIGO Scientific Collaboration ) , Classical Quantum Gravity 32 , 074001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001 [2] 2 F. Acernese , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [3] 3 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 161101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101 [4] 4 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 061102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102 [5] 5 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 241103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103 [6] 6 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. X 6 , 041015 ( 2016 ). PRXHAE 2160-3308 10.1103/PhysRevX.6.041015 [7] 7 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 221101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101 [8] 8 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Astrophys. J. 851 , L35 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa9f0c [9] 9 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 141101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101 [10] 10 B. Allen and J. D. Romano , Phys. Rev. D 59 , 102001 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.59.102001 [11] 11 N. Christensen , Phys. Rev. D 46 , 5250 ( 1992 ). PRVDAQ 0556-2821 10.1103/PhysRevD.46.5250 [12] 12 T. Regimbau , Res. Astron. Astrophys. 11 , 369 ( 2011 ). 1674-4527 10.1088/1674-4527/11/4/001 [13] 13 X.-J. Zhu , E. Howell , T. Regimbau , D. Blair , and Z.-H. Zhu , Astrophys. J. 739 , 86 ( 2011 ). ASJOAB 1538-4357 10.1088/0004-637X/739/2/86 [14] 14 P. A. Rosado , Phys. Rev. D 84 , 084004 ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.84.084004 [15] 15 S. Marassi , R. Schneider , G. Corvino , V. Ferrari , and S. P. Zwart , Phys. Rev. D 84 , 124037 ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.84.124037 [16] 16 C. Wu , V. Mandic , and T. Regimbau , Phys. Rev. D 85 , 104024 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.104024 [17] 17 X.-J. Zhu , E. J. Howell , D. G. Blair , and Z.-H. Zhu , Mon. Not. R. Astron. Soc. 431 , 882 ( 2013 ). MNRAA4 0035-8711 10.1093/mnras/stt207 [18] 18 I. Kowalska-Leszczynska , T. Regimbau , T. Bulik , M. Dominik , and K. Belczynski , Astron. Astrophys. 574 , A58 ( 2015 ). AAEJAF 0004-6361 10.1051/0004-6361/201424417 [19] 19 J. D. Romano and N. J. Cornish , Living Rev. Relativity 20 , 2 ( 2017 ). 1433-8351 10.1007/s41114-017-0004-1 [20] 20 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 131102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131102 [21] 21 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 121101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121101 [22] 22 P. A. R. Ade , Astron. Astrophys. 594 , A13 ( 2016 ). AAEJAF 0004-6361 10.1051/0004-6361/201525830 [23] 23 T. Callister , L. Sammut , S. Qiu , I. Mandel , and E. Thrane , Phys. Rev. X 6 , 031018 ( 2016 ). PRXHAE 2160-3308 10.1103/PhysRevX.6.031018 [24] 24 P. Ajith , Phys. Rev. D 77 , 104017 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.77.104017 [25] 25 P. Ajith , Phys. Rev. Lett. 106 , 241101 ( 2011 ). PRLTAO 0031-9007 10.1103/PhysRevLett.106.241101 [26] 26 E. Vangioni , K. A. Olive , T. Prestegard , J. Silk , P. Petitjean , and V. Mandic , Mon. Not. R. Astron. Soc. 447 , 2575 ( 2015 ). MNRAA4 0035-8711 10.1093/mnras/stu2600 [27] 27 P. Madau and M. Dickinson , Annu. Rev. Astron. Astrophys. 52 , 415 ( 2014 ). ARAAAJ 0066-4146 10.1146/annurev-astro-081811-125615 [28] 28 D. Meacher , M. Coughlin , S. Morris , T. Regimbau , N. Christensen , S. Kandhasamy , V. Mandic , J. D. Romano , and E. Thrane , Phys. Rev. D 92 , 063002 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.063002 [29] 29 K. Belczynski , V. Kalogera , and T. Bulik , Astrophys. J. 572 , 407 ( 2002 ). ASJOAB 1538-4357 10.1086/340304 [30] 30 S. Ando , J. Cosmol. Astropart. Phys. 06 ( 2004 ) 007 . JCAPBP 1475-7516 10.1088/1475-7516/2004/06/007 [31] 31 K. Belczynski , R. Perna , T. Bulik , V. Kalogera , N. Ivanova , and D. Q. Lamb , Astrophys. J. 648 , 1110 ( 2006 ). ASJOAB 1538-4357 10.1086/505169 [32] 32 J. A. de Freitas Pacheco , T. Regimbau , S. Vincent , and A. Spallicci , Int. J. Mod. Phys. D 15 , 235 ( 2006 ). IMPDEO 0218-2718 10.1142/S0218271806007699 [33] 33 E. Berger , Astrophys. J. 664 , 1000 ( 2007 ). ASJOAB 1538-4357 10.1086/518762 [34] 34 E. Nakar , Phys. Rep. 442 , 166 ( 2007 ). PRPLCM 0370-1573 10.1016/j.physrep.2007.02.005 [35] 35 R. O’Shaughnessy , K. Belczynski , and V. Kalogera , Astrophys. J. 675 , 566 ( 2008 ). ASJOAB 1538-4357 10.1086/526334 [36] 36 M. Dominik , K. Belczynski , C. Fryer , D. E. Holz , E. Berti , T. Bulik , I. Mandel , and R. O’Shaughnessy , Astrophys. J. 759 , 52 ( 2012 ). ASJOAB 1538-4357 10.1088/0004-637X/759/1/52 [37] 37 M. Dominik , K. Belczynski , C. Fryer , D. E. Holz , E. Berti , T. Bulik , I. Mandel , and R. O’Shaughnessy , Astrophys. J. 779 , 72 ( 2013 ). ASJOAB 1538-4357 10.1088/0004-637X/779/1/72 [38] 38 J. Abadie , Classical Quantum Gravity 27 , 173001 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/17/173001 [39] 39 K. Belczynski , D. E. Holz , T. Bulik , and R. O’Shaughnessy , Nature (London) 534 , 512 ( 2016 ). NATUAS 0028-0836 10.1038/nature18322 [40] An analysis using all events in O2 will be done in a follow-up paper. However, as noted in [21] , the power-law mass distribution considered here is dominated by events with low masses, and so the inclusion of GW170814 would not change the rate estimate significantly. [41] 41 M. Fishbach and D. E. Holz , Astrophys. J. 851 , L25 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa9bf6 [42] In fact this scaling relationship is approximate, but leads to a conservative estimate. [43] 43 D. Meacher , E. Thrane , and T. Regimbau , Phys. Rev. D 89 , 084063 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.084063 [44] 44 B. P. Abbott , Living Rev. Relativ. 19 , 1 ( 2016 ) [ arXiv:1304.0670 ]. [45] 45 E. Thrane and J. D. Romano , Phys. Rev. D 88 , 124032 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.124032 [46] 46 S. Bird , I. Cholis , J. B. Muñoz , Y. Ali-Haïmoud , M. Kamionkowski , E. D. Kovetz , A. Raccanelli , and A. G. Riess , Phys. Rev. Lett. 116 , 201301 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.201301 [47] 47 M. Sasaki , T. Suyama , T. Tanaka , and S. Yokoyama , Phys. Rev. Lett. 117 , 061101 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.061101 [48] 48 V. Mandic , S. Bird , and I. Cholis , Phys. Rev. Lett. 117 , 201102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.201102 [49] 49 T. Regimbau , M. Evans , N. Christensen , E. Katsavounidis , B. Sathyaprakash , and S. Vitale , Phys. Rev. Lett. 118 , 151105 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.151105 [50] 50 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Astrophys. J. 832 , L21 ( 2016 ). ASJOAB 1538-4357 10.3847/2041-8205/832/2/L21 [51] 51 I. Kowalska-Leszczynska , T. Regimbau , T. Bulik , M. Dominik , and K. Belczynski , Astron. Astrophys. 574 , A58 ( 2015 ). AAEJAF 0004-6361 10.1051/0004-6361/201424417 [52] 52 E. Thrane , Phys. Rev. D 87 , 043009 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.043009 [53] 53 L. Martellini and T. Regimbau , Phys. Rev. D 89 , 124009 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.124009 [54] 54 R. Smith and E. Thrane , arXiv:1712.00688 . [55] 55 E. Thrane , S. Ballmer , J. D. Romano , S. Mitra , D. Talukder , S. Bose , and V. Mandic , Phys. Rev. D 80 , 122002 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.80.122002 [56] 56 S. W. Ballmer , Classical Quantum Gravity 23 , S179 ( 2006 ). CQGRDG 0264-9381 10.1088/0264-9381/23/8/S23 [57] 57 S. Mitra , S. Dhurandhar , T. Souradeep , A. Lazzarini , V. Mandic , S. Bose , and S. Ballmer , Phys. Rev. D 77 , 042002 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.77.042002 [58] 58 S. G. Crowder , R. Namba , V. Mandic , S. Mukohyama , and M. Peloso , Phys. Lett. B 726 , 66 ( 2013 ). PYLBAJ 0370-2693 10.1016/j.physletb.2013.08.077 [59] 59 T. Callister , A. S. Biscoveanu , N. Christensen , M. Isi , A. Matas , O. Minazzoli , T. Regimbau , M. Sakellariadou , J. Tasson , and E. Thrane , Phys. Rev. X 7 , 041058 ( 2017 ). PRXHAE 2160-3308 10.1103/PhysRevX.7.041058

FundersFunder number
Not addedST/M005844/1, ST/K000365/1, ST/N005481/1, ST/L000911/1
National Science Foundation1607709, 1707965, 1708081, 1607520, 1607585, 1700765, 1707835, 1404139, 1606654
Directorate for Mathematical and Physical Sciences
Kavli Foundation
National Kidney Foundation of Iowa
Canadian Institute for Advanced Research
College of Natural Resources and Sciences, Humboldt State University
Natural Sciences and Engineering Research Council of Canada
Ontario Ministry of Economic Development and Innovation
Science and Technology Facilities CouncilST/N00003X/1, ST/J000019/1, ST/P000258/1, ST/H002006/1, ST/L000954/1, PP/F001118/1, ST/J000345/1, ST/I000887/1, 1653071, ST/N000072/1, ST/I006277/1, ST/N005422/1, ST/N005716/1, PPA/G/S/2002/00652, ST/J000361/1, Gravitational Waves, ST/G504284/1, ST/K000845/1, ST/L003465/1, ST/I006242/1, PP/F001096/1, ST/M006735/1, ST/I006269/1, ST/N000080/1, ST/I001085/1, ST/L000946/1, ST/N000633/1, ST/J00166X/1, ST/N005430/1
Leverhulme Trust
Royal Society
Scottish Funding Council
Scottish Universities Physics Alliance
European Commission
Australian Research Council
Department of Science and Technology, Ministry of Science and Technology, India
Council of Scientific and Industrial Research, India
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung159922
National Natural Science Foundation of China
Science and Engineering Research Board
Russian Foundation for Basic Research
Research Grants Council, University Grants Committee
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Generalitat Valenciana
Hungarian Scientific Research Fund
National Research Foundation of Korea
Instituto Nazionale di Fisica Nucleare
Narodowe Centrum Nauki
Ministry of Education, India
Ministry of Science and Technology, Taiwan
Centre National de la Recherche Scientifique
Russian Science Foundation
European Regional Development Fund
Universitat de les Illes Balears
National Science Foundation
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Agencia Estatal de Investigación
Ministério da Ciência, Tecnologia, Inovações e Comunicações
Istituto Nazionale di Fisica Nucleare
ICTP South American Institute for Fundamental Research

    Fingerprint

    Dive into the research topics of 'GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences'. Together they form a unique fingerprint.

    Cite this